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Abstract

Irrigation schemes are one of the most important policy responses designed to reduce poverty, par-
ticularly in sub-Saharan Africa. Concomitantly, they facilitate the propagation of schistosomiasis, a
water-based debilitating disease that is endemic in many developing countries. I study the economic
impact of schistosomiasis in Burkina Faso via the estimation of its burden on agricultural production
with new data and new methods, and identify it as a productivity shock. I show that the disease is both
a driver and a consequence of poverty, and that returns to water resources development are significantly
reduced once its health effects are taken into account. I reconcile these results with a theoretical frame-
work, which shows how the joint dynamics of schistosomiasis and the production decisions of farmers
create Pareto-inferior endemic Nash equilibria, and how the wealth-dependent disease reproduction rate
(the R0) can generate poverty traps. A stochastic extension of the model shows how this rate controls
the probability flow between the system attractors. Local disease and poverty conditions are shown to be
transported on the network generated by human mobility. Social optima require deviations from separa-
ble allocations proportional to the disease burden on the maximized utility paths. Complete information
on the feedback between wealth and disease can potentially allow farmers to escape the poverty trap.

JEL Codes: C61, D15, I15, O13
Keywords: Schistosomiasis; Water Resources; Poverty Traps; Farming Household Decisions; Stochas-
tic Dynamical Systems.

1 Introduction

Schistosomiasis (Bilharzia, or snail fever) is a water-based debilitating neglected tropical disease that affects

an estimated 250 million people, more than 85% of whom live in sub-Saharan Africa (Walz et al., 2015).

Claiming 3 million disability-adjusted life years per year in the past decade, its global burden ranks second

only to malaria among parasitic diseases (James et al., 2018). Severe morbidity due to schistosomiasis results

from the accumulation of eggs laid by flatworms of genus Schistosoma in the tissues of the human host, lead-

ing to a chronic inflammatory response. The parasite species that cause the two main forms of the disease

(intestinal and uro-genital) present a complex life cycle involving aquatic snails as intermediate hosts. When
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untreated, advanced forms of schistosomiasis lead to kidney failure, bladder cancer, liver fibrosis (Richter,

2003), as well as heightened risk of HIV transmission (Mbabazi et al., 2011). The highest parasite burden

is usually borne by school-age children and the disease has been linked to anemia, stunting and cognitive

deficits, leading to poor school performance and higher drop-out rates (Ezeamama et al., 2018). Due to these

life-long impacts, schistosomiasis exerts large health, social and financial burdens on infected individuals and

households (King, 2010).

Water resources development aimed at alleviating poverty in rural schistosomiasis-endemic communities

in sub-Saharan Africa has been shown to exacerbate disease transmission (Steinmann et al., 2006). Dams

and irrigation schemes expand the suitable habitat for the aquatic snails that serve as the intermediate

hosts of schistosomes, and also increase the frequency and density of human-water contacts during which

infection can occur (Diakité et al., 2017). This effect is particularly marked in water-constrained regions,

possibly due to the concentration of contacts in the few available water points (Steinmann et al., 2006). In

developing countries, the sector which one would naturally expect to be the most affected by the disease is

agriculture, particularly in its subsistence form (De Janvry and Sadoulet, 2010, Christiaensen et al., 2011).

This is because populations that rely heavily on agricultural production are the ones that are the most

exposed to infection and ultimately suffer the highest disease burden. Schistosomiasis may thus generate

poverty traps, due to the continuous feedback between ecosystems, economic activity and human well-being

(Dasgupta et al., 2001). However, the net economic impact of the disease and the underlying tradeoffs be-

tween water resources development and public health concerns have yet to be rigorously quantified. General

results concerning the relationship between diseases and economic development can be found in Acemoglu

and Johnson (2007), Bloom et al. (2004), Bleakley (2007), Bleakley and Lange (2009) and Bleakley (2010),

and several studies have shown how negative health shocks in child development can lead to decreases in

future wages or labour productivity (Sahn and Alderman, 1998, Strauss and Thomas, 1998, Behrman and

Rosenzweig, 2004). Despite extensive evidence concerning the long-term health effects of endemic diseases in

developing countries, there have been few attempts to quantify their economic impact. This is particularly

true of parasitic diseases such as schistosomiasis. Attempts have been sparse and either focused on specific

mechanisms of small scale, albeit of great importance, or lacked results of significant strength (Foster et al.,

1967, Baldwin and Weisbrod, 1974, Weisbrod et al., 1974, Audibert, 1986, Audibert and Etard, 1998, Miguel

and Kremer, 2004, Audibert, 2010).

The empirical focus of this paper is on Burkina Faso, a country where schistosomiasis is endemic both

in its intestinal and uro-genital forms (Poda et al., 2004, Lai et al., 2015) in order to establish a baseline

case for what is potentially a large negative effect, and where there are less confounders generated by the

interdependence of economic sectors found in more diversified economies. Burkina Faso is a low-income,

landlocked Sub-Saharan country with very limited resources. In 2016, 80% of its 18 million inhabitants

worked in the agricultural sector. Burkinabé agriculture is the main component of the country’s economy,

employing roughly 80% of the population, and is mostly of the subsistence variety, with low crop and live-

stock productivity and high levels of inefficiency (World Bank Results, 2017, Udry, 1996). Diversification in

the sector is low, although increasing, with cotton being the most important cash crop. Large- and small-

scale water resources development projects have been completed in the past 30 years to support agricultural

activities and reduce climate vulnerability, which have however exacerbated the prevalence of malaria and

schistosomiasis (Boelee et al., 2010). Mass drug administration campaigns, initiated by the Schistosomiasis
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Figure 1: Mechanisms studied in the paper: (1) Effect of schistosomiasis on agriculture. (2) Freshwater snails,
the disease’s intermediate vector, as instrumental variables. (3) Poverty trap mechanics, where poverty and disease
burden reinforce each other. (4) The feedback effects water resources development and disease.

Control Initiative in 2005, have been successful in reducing morbidity in most regions with a national mean

prevalence of around 5% in school-age children in 2010 (Ouedraogo et al., 2016).

Figure 1 shows a schematic representation of the main empirical interests of this paper. The first mech-

anism that I want to study is the economic impact of schistosomiasis via the burden the disease exerts on

agriculture. Because of the complexity of the disease dynamics and the profound interlinkages with a large

set of socioeconomic and environmental variables (Gurarie and Seto, 2009), this identification requires the

use of detailed agricultural and household datasets, as well as precise information on disease prevalence on

a large spatial scale. Recent developments in disease mapping allow us to obtain high resolution prevalence

maps which have been used in a variety of public health contexts (Lai et al., 2015) but have not hitherto

been paired with household and plot-level data. I first create and geolocalize a large dataset for Burkina Faso

that merges household and plot-level survey data with village-level disease prevalence data. I then proceed

to estimate the effect of schistosomiasis on agricultural production with a variety of econometric techniques

in the estimation of an agricultural production function. In order to address various estimation biases and

establish causality of the effect, I use the spatial densities of the aquatic snails that serve as intermediate

host of the disease as instrumental variables. In order to absorb all confounding effects of the large set of

input variables and avoid having to assume a particular form for the production function, I exploit adaptive

machine learning methods, and thus obtain a more precise estimate of the mechanism of interest. I estimate

that the elimination of the disease would increase average crop yields by 7%, rising to 32% for the highest

infection clusters, and show the disease burden to be akin to a productivity shock.

Having established the existence of an adverse economic burden of the disease, it is of great importance

to study its consequences on poverty. Agricultural production in the countries where schistosomiasis is en-
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demic, such as the sub-Saharan region and particularly Burkina Faso, is mostly of subsistence. This means

that health shocks that translate to production shocks are likely to affect simultanously the income and the

survival odds of farming households. I therefore focus on the lower tail of the joint distribution of overall

crop size and crop weight farmed by households, which is a reliable indicator of household poverty, and

find that in these tails the adverse effect of schistosomiasis is substantially greater. This shows that indeed

poverty has a reinforcing effect on the burden the disease exerts on agricultural production, as well as being

consequence of the burden itself: this loop is akin to a “poverty trap”, creating states of indigence driven by

the disease burden’s debilitating nature.

The last mechanism I study empirically is the role of water resources development. I include in the

dataset the a wide network of water infrastructures, ranging from the country’s four main hydroelectric

dams to small-scale irrigation reservoirs, and study the effect of their vicinity to villages on both agricultural

yield and disease burden. The nature of this analysis requires the use of spatial techniques: the explicit

inclusion of distance variables generates persistent spatial dependence in the data that cannot be removed

even by the comprehensive set of fixed effects used in the rest of the paper. I show water resources infrastruc-

tures to considerably boost agriculture and economic development, but also to increase the adverse effects of

schistosomiasis via both the increase of snail habitat and human-water contact. The presence of large-scale

dams has substantial benefits on agricultural production, but simultaneously magnifies the negative burden

of the disease on yield: villages located at a greater distance suffer a reduced burden. Returns to such large

infrastructures are therefore significantly lower once their higher-order effects on health are explicitly taken

into account.

The empirical results show schistosomiasis to generate a persistent negative productivity shock for farm-

ing households, reducing agricultural yield by its debilitating health burden and reinforcing poverty. I then

construct a novel theoretical framework that uses these results as its structural justification, for example

in the modeling of the farming households’ agricultural production function. This allows the model to be

based on assumptions firmly grounded on empirical evidence, framing it within a structure compatible with

household behavior. This also allows the mechanisms I have uncovered in the data to be generalized beyond

the specific case of Burkina Faso. I build on a rich existing literature on poverty traps, such as Matsuyama

(1991), Azariadis and Drazen (1990) and Farmer and Benhabib (1994) up to Antoci et al. (2011), as well as

Dasgupta and Mäler (1995), 1 The literature that joins disease dynamics to economic systems is more recent

and more sparse: an example is Goenka et al. (2014), up to the recent flurry of research (Acemoglu et al.

(2020) and McAdams (2020), among others). I join a standard household optimization problem with the

dynamic equations of the disease established by the ecology literature. I show that the optimal choices of

farming households facing the negative externalities due to schistosomiasis established by my empirical re-

sults can lead to equilibria where the disease is endemic and generates inferior levels of household wealth and

consumption. I model a general human-schistosome contact parameter as a function of the distribution of

wealth in the affected area, in order to represent the benefits stemming from increased overall sanitary condi-

tions and better access to clean water, and to represent the reinforcing effect of poverty uncovered in the data.

I am able to obtain explicitly the global dynamics of the resulting system and show how even the simplest

of frameworks, a basic household separable optimization problem, when augmented by the schistosomiasis

1For a comprehensive treatment of such literature we refer to Azariadis and Stachurski (2005)
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dynamics it allows for the emergence of endemic equilibria characterized by high disease intensity and low

household wealth and consumption. Such states are Nash equilibria, since schistosomiasis acts as an external

constraint faced exogenously by the farming household, and is continuously determined by the individual

wealth trajectories. I explicitly define the separator manifold between disease-free and endemic equilibria as

the level of wealth for which the reproduction rate of the disease (the R0, now wealth-dependent) crosses

the threshold of unity. If the reproduction rate of the disease at these equilibria is high enough to dominate

the positive externalities of wealth, even after a local perturbation of the fixed point, such Pareto-dominated

states can mutate in absolute poverty traps from which the household cannot escape unless the initial joint

state of wealth and disease intensity is drastically improved. In some cases, however, the inability of the

farming households to escape such traps can derive from their incomplete information on the nature of schis-

tosomiasis dynamics and especially on the feedback effects of wealth and agricultural production. Simply

put, the farmers experience an observable level of schistosomiasis, but consider it only as an exogenous

time-varying shock to their agricultural productivity and do not account for either its time evolution or the

continuous feedback effects between wealth and disease intensity. This “information trap” therefore prevents

them from the possibility of adjusting production decisions in order to escape such Pareto-inferior states

of low wealth and consumption. This happens because social optima, stemming from either fully informed

households or a social planner explicitly taking the disease dynamics into account, require deviations from

the separable optima that are proportional to the disease burden on the optimally controlled household

utility paths.

Natural randomness in the environment can lead to fluctuations in the disease dynamics. For example,

rainfall is largely responsible for creating the conditions that allow sufficient surface water accumulating in

ponds and thus expand snail breeding sites; on the other hand, extended dry spells can drastically reduce

snail habitat suitability. Natural variability derived from climate shocks, therefore, can directly affect the

structural parameters that drive environmental and disease dynamics. I incorporate these realistic features

in the model and study a stochastic system in order to better understand the seemingly erratic behavior

that cannot be described by a deterministic framework. The stochastic extension of the model allows to

capture the drastic shifts in the model structure caused by the omnipresent interdependencies between the

environment, diseases and human activity. I find that the interplay between wealth and stochastic disease

dynamics, represented by the wealth-dependent reproduction rate, controls the probability flow between the

disease-free and endemic states and acts as a regularizing force between the equilibria. I find that in the

presence of environmental randomness the endemic state is characterized by a probability measure continu-

ously modified by household decisions, with a stationary density shaped by the corresponding deterministic

equilibrium of household wealth and consumption. This state of disease-driven poverty is a global attrac-

tor of the system, drawing wealth, consumption and disease trajectories towards it upon deviations from a

disease-free condition.

The key policy implications of this paper are the following. First, elimination of the disease would

boost both economic growth and farming households’ well-being, and will help in drawing local communities

away from persistent poverty states. The results further highlight the importance of shifting farming house-

holds towards more productive forms of agriculture, such as cash crops, as well as the necessity to increase

awareness among the population of the anthropic factors affecting the dynamics of the disease. Another

policy-relevant aspect of the results is the fact that smaller-scale water reservoirs, mostly used for irrigation
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purposes, do not seem to particularly affect the disease burden on agriculture. I show that this feedback

is generated entirely by large-scale dams, and therefore the presence of smaller-scale infrastructures in the

territory should be incentivated.

This paper contributes to the literature in various ways, both from empirical and theoretical perspec-

tives. The first is the creation of a new dataset with the novel use of high-resolution disease prevalence maps

together with a geolocalized survey dataset on farming households and crops. The second contribution is to

establish the economic burden of schistosomiasis as substantial, poverty-reinforcing and akin to a produc-

tivity shock. The neglected state of schistosomiasis, and of its economic consequences in particular, is such

that it has received far less academic attention than other diseases such as malaria, and my work reinforces

its relevance from a development perspective. The third contribution is the novel use of the spatial density

of the disease’s intermediate vector as instrument for the disease intensity, as well as using machine learning

techniques to obtain a more precise estimate of the burden. The fourth contribution lies in the novelty

of the theoretical model, founded structurally on the empirical results, which replicates the mechanisms

found in the data and generalizes them outside our dataset. The model sheds further light on the nature

of endemic states as Nash equilibria, both deterministic and stochastic, and how the observed poverty traps

are a consequence of the wealth-dependent disease reproduction rate dominating over the positive feedback

effect of wealth and being robust to localized shocks. The model has the attractive features of being very

flexible, allowing for an explicit description of its rich dynamics and forming a baseline for multiple potential

extensions and improvements, which I leave to future research. The model further highlights the fundamen-

tal importance in the fight against persistent poverty that lies in agents having complete information on the

nature of the externalities they face, particularly in developing countries where natural constraints such as

endemic diseases constantly strain economic systems and exhibit continuous feedback effects. Overall, my

work reinforces the importance of accounting for the interactions between the environment, disease dynamics

and economic development. While the empirical focus has been on Burkina Faso, in part because it is likely

to be a worst-case scenario due to the country’s joint economic and epidemiological profile, my framework

can be applied to any country in which schistosomiasis is endemic and, indeed, to the economic impact of

many other diseases.

The paper is organized as follows. Section 2 presents the dataset; section 3 presents the estimates of the

burden of schistosomiasis on agriculture as well as the econometric framework and justifies the use of the

instruments. Section 4 presents evidence of the disease-driven poverty trap and section 5 presents the results

on water resources. Section 6 presents the theoretical model, its stochastic extension and the analysis of

social optima. Section 7 gives an overall view of the paper and concludes.2

2 Data

Survey data were obtained from the National Institute of Statistics and Demography (INSD) in Oua-

gadougou. The annual plot-level agricultural dataset provides detailed information on crops, yields, inputs

and pesticides, plot characteristics and labor type for the 2003-2017 period. Surveyed villages were dis-

tributed relatively uniformly across the country (Fig. 1a). The household survey data cover the 1996-2017

2The appendix provides a full description of the data, provides a plethora of robustness checks for the empirical results, as
well as all proofs.
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Figure 2: Data overview. (a) Villages included in the agricultural surveys, the capital Ouagadougou (white
point) and level 1 (regions, black lines) and level 2 (provinces, white lines) administrative subdivisions. (b)
River network (blue lines, width proportional to upstream area) and water resources infrastructure in the
country. (c) Estimated schistosomiasis prevalence up to 2010. (d) Estimated schistosomiasis prevalence for
2011-2017.

7



period and include detailed information on household characteristics and demographics. The agricultural

dataset is at plot level while many of the variables in the household survey are at individual level. The main

estimations of the paper are done at a plot level, therefore I have chosen to maintain all the information

at plot level and aggregate individual variables in the household-level dataset at a household level, to then

merge together via unique household identifiers into a large plot-level dataset. Villages are then geolocalized

by matching the survey datasets with administrative level data by fuzzy string matching in order to bypass

inconsistencies in village names due to different dialectal inflections and spelling variations. Households are

not identified geographically, and I am able to localize the data only at a village level. I include a a com-

prehensive set of climatic remote-sensing data including precipitation, temperature, and vegetation indices.

We extrapolate a variety of covariates from the raw rasters, such as mean temperatures in dry and rainy

seasons, precipitations in all seasons and mean and maximum dry spells. The pixel resolution of the climate

data allows to merge the rasters with the survey datasets at the village level. I then include in the dataset

the entire river and water resources infrastructure map for Burkina Faso, as shown in Fig.2b. I include the

four main dams, shown with a label in the figure, as well as a variety of water reservoirs of both permanent

and temporary regime, with covered surface ranging from around 1500 square meters up to 160 square kilo-

meters. A comprehensive mapping summarizing the dataset is shown in Figure 2. Full information on its

characteristics, summary statistics and details concerning the covariates used in the analysis can be found

in Appendix A.1.

I then merge the dataset with two high-resolution maps of schistosomiasis prevalence estimates in school-

aged children at a pixel resolution of 5× 5 km. This combined dataset is one of the major contributions of

this paper. The first map applies up until 2010 (Fig. 1c), the second thereafter (Fig. 1d). The estimated

prevalence is a joint measure of both uro-genital and intestinal schistosomiasis, caused by S. haematobium

and S. mansoni, respectively, and is obtained by means of Bayesian geostatistical analysis. For details

concerning the techniques utilized in the creation of the prevalence maps, I refer to Lai et al. (2015) for all

details of the first map, which apply equivalently for the second one. Because of resolution of the disease

maps, prevalence is constant within each village: households belonging to the same village will be assigned

the same level of schistosomiasis prevalence. Given that health consequences of schistosomiasis are more

directly linked to infection intensity (measured by egg-output) than to prevalence (Audibert, 1986, King and

Dangerfield-Cha, 2008), we translate estimated prevalence into a joint measure of schistosomiasis infection

intensity in terms of the average number schistosome egg-output per person. This was done by assuming

a negative binomial distribution of egg counts in urine and stools fit to parasitological data (see Appendix

B.1 for details). All our results continue to hold when disease prevalence obtained directly from the maps

is used in place of our intensity measure, as shown in Appendix B.3. Model-based estimates of spatial snail

density were derived from malacological surveys collected in two field sites located along the South-North

climatic gradient between the Sudanian and Sahelian regions (Perez-Saez et al., 2016).

3 Snails. Schistosomiasis and Agriculture

In order to estimate the economic impact of schistosomiasis, I rely on a specification that fully exploits the

wealth of information available in our dataset at both plot and household levels. I identify the burden of

the disease as a shock to overall productivity in an agricultural production function, which does not directly

affect the amount of labor or physical inputs needed for production but instead influences their effectiveness.
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The production technology is specified as

Yihjt = Ahj(1 +mhjt)
−θF (Xihjt)eihjt, (1)

where Yihjt is the yield (output per hectare) of plot i, farmed by household h in village j at time t, mhjt,

which is common to all plots cultivated by a given household, represents the direct effect of schistosomiasis

on productivity, calibrated by a parameter θ. I model the impact of the disease as (1 + m)−θ in order to

represent the fact that at a disease-free equilibrium the household’s production technology is unaffected, and

decreases as the disease burden worsens. The term Ajh represents household time-invariant productivity

shifters, some of which may be unobservable, F (.) is the production function and Xihjt is the matrix of

total inputs, including plot, household, climate and land covariates. Some inputs vary only across village

(climate), some are household-specific (all demographics and characteristics of the farming household) and

some exploit the full plot-level variation, such as crop choice, plot characteristics and land quality. Lastly,

eihjt = exp(αt + αh + αc + εihjt) represents plot-level unobservables, which we decompose into crop- (c),

household- (h) and time-specific components (t) as well as an idiosyncratic Gaussian disturbance term εihjt.

The parameter of interest is θ: it modulates the extent to which the disease affects agricultural yield, and

its estimate is expected to be negative. Since the “real” effect φ of the disease is unobservable, I proxy it

with the measure of infection intensity in terms of mean egg-output per person discussed earlier, denoted by

Ijt = (1 + Intjt). Taking logarithms then results in the quasilinear model:

yihjt = Ãjh − θĨjt + F̃ (Xihjt) + αt + αh + αc + εihjt, (2)

where the goal is to identify the parameter θ. In all estimations, for the variables that include zeroes

(particularly plot surface and yield) I use the inverse hyperbolic sine transformation instead of the natu-

ral logarithm. I begin by imposing a Cobb-Douglas functional form on F (.), which yields a fully linear

model. The instrumented model takes the same form as (2). Note, if the household is assumed to maxi-

mize profits over its set cultivated plots, that F̃ (Xihjt,Kihjt) must be replaced by F̃ (X∗ihjt,Kihjt), where

X∗ihjt(Ahj , I
−θ
jt , pjt,Kihjt, εihjt) is input use at the optimum, pjt represents input prices and Kihjt repre-

sent all other factors of production not under the control of the household (for example, climate). In this

case the total marginal effect of schistosomiasis on yield would be given by −θ +
∑w=W
w=1

∂F̃ (X∗w,K)
∂Xw

dX∗w
dI ,

where W is the total number of inputs chosen optimally. In Appendix B.2 I show that (1) is compati-

ble with a model in which schistosomiasis affects effective labor input and that we estimate
dX∗w
dI = 0 for

all w = 1 . . .W : schistosomiasis therefore is a pure productivity shock that does not affect optimal input use.

I then relax the restrictive assumptions (such as unitary elasticity of substitution between factors) imposed

by the Cobb-Douglas functional form, and use adaptive machine learning methods in order to partial out

all confounding and nonlinear effects of the factor inputs Xihjt. The quasilinear structure of (2), stemming

from the identification of schistosomiasis as a productivity shock, allows to disentangle the effect of the

disease from the effect of the other covariates. After obtaining a consistent estimate of the function F̃ (.),

one can partial out its predicted values from both log-yield and schistosomiasis infection intensity, thereby

identifying the effect of interest, θ. Since determining the precise parametric form of F̃ that best fits the

data is of secondary interest in the present context, adaptive machine learning methods are used, which

are obscure in terms of interpretation but well-suited for prediction and classification. This procedure is

similar to the procedure first proposed by Belloni and Chernozhukov (2013) and further expanded in Belloni
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et al. (2017) and Chernozhukov et al. (2018). The original procedure was proposed in order to deal with

overfitting due to high-dimensional data and the estimation of treatment effects, and in this paper I extend

it to the regularization of all confounding effects due to the unknown functional form for the production

function from both outcome variable (yield) and disease intensity, after partialling out the required fixed

effects: this extension is another methodological contributions of the paper. The procedure needs to be

cross-fit to remove bias. The method requires imposing the double Neyman-orthogonal moment conditions:

E[ψ(W, θ, η0)] = 0, (3)

∂ηE[ψ(W, θ, η)]η=η0 = 0, (4)

where ψ(W, θ, η0) = ((y − E[y|X]) − (I − E[I|X])θ)(I − E[I|X]) is the Neyman-orthogonal score function,

η0 = (E[y|X],E[I|X]), and where X is the complete matrix of covariates; ∂η is a functional derivative oper-

ator, and the second condition imposes validity of the estimators under possible deviations from η0. For the

estimation of the unknown nuisance functions E[y|X] and E[I|X], I use random forests, gradient boosting

machines and neural networks to obtain their predicted values and identify the parameter of interest θ, and

compare their performance using a mean-squared error criterion. For further references on the estimators, see

Hastie et al. (2001), and for all details on the architecture see Appendix B.3. Unbiasedness of the estimator

is ensured by cross-validation. This approach is easily extended to an IV procedure, under the maintained

hypothesis that the exclusion restriction for the IVs hold, and adds one stage per instrument to the usual

procedure in which the Neyman-orthogonal moment conditions are imposed on each of the IVs.

I further estimate a semi-parametric model in order to expose potential non-linearities in the effect of the

disease, where θIjt is replaced by the smooth function φ(Ijt) in Eq (2). Here φ is estimated by minimizing

the squared residuals with a smoothing penalty on the second derivative of φ, instrumented using a standard

two-stage semiparametric method. The smoothing parameter is chosen by cross-validation, and the degrees

of freedom of the interpolating function are chosen iteratively by checking for zero signal on the residuals.

3.1 Snail densities as instrumental variables

The granularity of the schistosomiasis prevalence maps results in a disease measure that is constant at a

village level. Estimating the mechanisms of interest, particularly the effect of schistosomiasis on agricultural

yield and the characterization of the disease as a poverty trap, greatly benefits from the use of our rich dataset

at a more disaggregated level, such as household or plot level. However, this is likely to suffer from a variety

of endogeneity issues, especially related to error in measurement given that the “real” value of the disease

burden is likely to vary within each village. We therefore address these issues with the use of snail densities

as an IV. This approach requires a detailed justification. The prevalence measure that I use in the analysis

is a joint measure, generated by averaging the two forms (intestinal and uro-genital) and subtracting the

covariance, as in Lai et al. (2015). One therefore needs to instrument the two forms of the disease by including

information on the different species of snail hosts. The intestinal form caused by S. mansoni is concentrated

in the southwest part of the country, and its range is constrained by the presence of its intermediate host

snails, Biomphalaria pfeifferi, as shown by Perez-Saez et al. (2017). This snail species is not present outside

of this region due to its sensitivity to prolonged habitat dryouts which are more common in the Central and

Northern parts of the country (Poda et al., 2004, Perez-Saez et al., 2017). As an instrument for intestinal

schistosomiasis we therefore use the mean of Biomphalaria abundance for the villages in the southwest. The
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uro-genital form of the disease, caused by a different species of schistosomes, S. haematobium, is spread more

uniformly throughout the country due to the ubiquity of the snail species of the genus Bulinus which serve

as intermediate hosts. The highest prevalence of uro-genital schistosomiasis is found in the northern part

of the Sahel. As opposed to Biomphalaria, Bulinus are present in a wide range of natural and man-made

habitats throughout the country Poda et al. (2004), and we use estimates of its abundance in ponds and

zones with ephemeral rivers in both the rainy and the dry season in order to capture changes in river size. I

use the gridded predictions of the seasonal variations of snail densities produced in Perez-Saez et al. (2019).

Joint dependence of snail density, schistosomiasis prevalence and agricultural yield on climate variables is

accounted for by including a large set of climate covariates in all regressions, as explained in the Data section

of the paper and in Appendix A.1. The main driver of snail predicted density is autocorrelation, as well as

a lagged structure of climate variables: results are unchanged if one uses for each disease year the lagged

densities, in order to check for possible joint dependence on environmental unobservables for yield and snails.

The concern was minimal, given the large range of environmental and climate covariates included, and the

results confirm this. Error correction due to generated instruments is addressed by including model error in

the estimations. In the dataset, the correlation between disease intensity and snail abundance is positive and

strong, especially with Biomphalaria in rivers in the southwest, and with Bulinus in the northern dry regions

where rivers are more ephemeral. In Appendix B.3 I report all tables showing relevance of the instruments

and a control function approach implying rejection of the hypothesis of exogeneity.

3.2 Results

I present results of the estimation of (2) for households and plots observed in 2009 and 2011. These years

are chosen to maximize the number of observations and provide the best fit and associated model diagnos-

tics. Furthermore, these years cover the sharp decrease in disease burden in school-aged children through

Burkina Faso’s schistosomiasis control program observed between 2008 and 2013 (Ouedraogo et al., 2016).

All results instrument schistosomiasis intensity with our snail density measures. Results are similar for other

combinations of years for which there are enough repeated households. All estimates include a measure of

malaria prevalence in order to account for co-morbidity which, interestingly, does not significantly affect

yield at conventional levels of confidence. In no way does this imply that malaria has no adverse effect on

households: this simply reflects the fact that malaria exerts a burden of an entirely different nature, possibly

more compatible with a shock to labor supply. All additional tables, results for both plot- and village-level

estimations and robustness checks are reported in Appendix B.3. The upper panel of Figure 16 reports the

main estimates of the paper, which quantify the loss of agricultural yield due to schistosomiasis. The point

estimate represents the marginal percentage impact of one additional worm egg per person on yield, and the

labels indicate the percentage loss of agricultural yield due to schistosomiasis, both on average and in the

top 5% infection intensity clusters.

The topmost estimate in the upper panel of Figure 16 results from a multiplicative (Cobb-Douglas)

form for the production technology, which results in a log-linear model. The point estimate shows that

schistosomiasis causes an average loss of agricultural yield of 8.9% (95% CI: 1.1%-16.5%), rising to 43.5% for

the households in the top 5% quantile of disease intensity. The second estimate is agnostic concerning the

functional form of the production technology: all the non-linear confounding effects stemming from the large

matrix of inputs are absorbed by means of different adaptive machine learning methods, compared with a

mean squared error criterion. By doing so, point estimates of the the disease intensity’s marginal effect fall,
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Figure 3: (Upper panel) Estimates of the yield loss (in percent) due to schistosomiasis for log-linear estimations
(above) and with a flexible specification using adaptive ML methods (below). The point estimates indicate the
marginal yield loss due to an extra worm egg/person. Each label reports the average loss and in parentheses the
loss at the top 5% infection intensity clusters. 95% error bands are cluster-bootstrapped at the village level. (Lower
panel) Nonlinear effect of the disease. Estimation done by fitting an instrumented adaptive spline using a two-stage
semiparametric method. Dotted lines represent the 95% confidence interval in function fitting.
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and precision improves. For our 2009-2011 sample, our preferred method is given by tuned random forests,

and results in a mean loss of yield caused by schistosomiasis of 6.6% (95% CI: 2.2%-12.02%), increasing to

32.2% for the household at the top 5% infection quantile. All plot-level estimates control for time, household

and crop unobservables, and in Appendix B.3 we show how the endogeneity bias is likely to result from

measurement errors, since estimates using heteroskedasticity as internal instruments (Lewbel, 2012) yield

almost identical estimates. Aggregating the data to the village level yields similar results. Non-linearities in

the impact of schistosomiasis are significant, as illustrated in the lower panel of Fig.16. The adverse effect

of the disease is concentrated in villages that experience mid- to high levels of disease intensity, with the

negative effect on yield appearing at intensities above 30 worm eggs/person. The upshot from the policy

perspective is that the adverse impact of schistosomiasis on economic development is substantial, and control

efforts aiming at reducing disease morbidity would produce substantial gains in agricultural productivity.

4 Poverty Traps

In Burkina Faso, agricultural households are largely engaged in subsistence farming: shocks to yield therefore

affect simultanously both income and survival probability. Moreover, it is likely that the productivity decrease

attributable to schistosomiasis is a function of various household characteristics. Here, I explore two such

characteristics: cropping patterns and poverty. I first focus on plots that produce the main cash crop farmed

by Burkinabé households, cotton. In Appendix C I show that such plots are significantly larger and seem

to be immune from any deleterious effects of schistosomiasis. A potential reason for this could be that

households farming cash crops such as cotton on large plots are on average much richer: they may therefore

have readier access to clean running water and enjoy better sanitary conditions. In contrast, households that

rely on food crops farm smaller plots and suffer the most from the productivity shock. This is a first sign of

how schistosomiasis is effectively a disease of poverty, acting both as its cause and consequence, as indicated

in relationship (3) in Figure 1. However, cash crops, particularly GMO-resistant varieties of cotton, are

also sometimes farmed by poorer households in order to reduce the risk of adverse shocks. To account for

this, I examine the additional burden of the disease for households farming plots that belong to different

quantiles of the joint distribution of plot surface and crop weight. Households in the lower reaches of this

joint distribution correspond to those who are the most affected by poverty, almost entirely dependent on

subsistence agriculture. I then interact schistosomiasis intensity with an indicator representing whether a

given plot belongs to a specific quantile of the joint plot surface/crop weight distribution. The estimated

equation is the following:

yihjt = Ãjh + θĨjt + θpj Ĩjt × 1(wj ,sj)≤Qjk
+ F̃ (Xihjt) + αt + αh + αc + εihjt (5)

Qjk = min{wihjt, sihjt : k ≤ Φ(w, surf; t)},

where Φ is the joint distribution of plot weight w and surface s for each year t. We estimate θp, the co-

efficient associated with this interaction variable, while varying k on a grid ranging from the 20th to the

60th percentile of the joint distribution. The coefficients associated with these variables represent the added

burden of schistosomiasis linked with the underlying plot characteristics, which are likely to be correlated

with poverty at the household level. In the upper panel of Figure 4 I show such plots suffer an additional

loss to yield due to schistosomiasis ranging from 5% to 10%. These incremental effects vanish at the 55th
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percentile (the complete set of results and all details on coefficients and their standard errors is presented in

Appendix D).

In order to characterize this mechanism in terms of its link to household poverty, I then carry out a

similar procedure where the indicator function is defined at the household rather than at the plot level. The

interest is in the estimation of θph in

yihjt = Ãjh + θĨjt + θphĨjt × 1(wh,sh)≤Qhk
+ F̃ (Xihjt) + αt + αh + αc + εihjt (6)

Qhk = min


Nht∑
j=1

wihjt,

Nht∑
j=1

sihjt : k < Φ
(
wh, sh; t

) ,

where Φ
(
wh, sh

)
is the joint distribution of total crop weight and plot surface farmed by each household and

Nh
t is the number of plots farmed by each household each year. The cutoffs k in this case correspond to the

lower 5% and 10% tails. The lower panel of Figure 4 shows that for such households schistosomiasis exerts

a disproportionately higher burden: -32.7% for the households in the bottom 10% and -45% for those in the

bottom 5%. Results are unchanged if one carries out the procedure using the joint distribution of harvest

and plot yield. Estimates in both specifications are from a log-linear model where schistosomiasis intensity

is instrumented with a control function approach, and errors are cluster-bootstrapped at a village level.

Poverty thus reinforces the negative economic impact of schistosomiasis, with this feedback loop poten-

tially generating a poverty trap phenomenon. Conversely, development interventions that increase agricul-

tural productivity and allow peasants to diversify into cash crops will both improve living standards and

reduce the burden of the disease.

5 Dams. Schistosomiasis and water resources development

Having established the reinforcing effects of schistosomiasis on poverty, it is of substantive importance to

examine whether economic policies aimed at lifting people out of poverty can indirectly increase poverty

itself by means of their impact on the spatial distribution of the disease, as indicated by mechanism (4) in

Figure 1. Given that schistosomiasis is water-based, we study the feedback effects between the disease and

water resources development. The first focus is on Burkina Faso’s four main dams: the Bagré Dam and

Kompienga Dam in Kompienga province, the Ziga Dam in Oubritenga province and the Léry Dam in Nayala

province (Fig. 1b). To address this question I aggregate the data up to the village level, and compute the

geographical distance of each village from the closest dams and reservoirs. An interesting characteristic of

our dataset is the homogeneity of households in terms of yield: in Figure 5 I plot the density of yields in

levels as well as the corresponding density after the within-village transformation. The densities are almost

visually identical, and a Kolmogorov-Smirnov test cannot reject the null of equal distributions. A similar

finding is presented by Udry (1996), using Burkina Faso ICRISAT survey data. Furthermore, the yield

density remains equally unchanged after partialling out household unobservables: plot-level heterogeneity,

therefore, seems to be driven by plot characteristics. Given the aforementioned homogeneity of household

yields, village aggregation leads to what is essentially a representative household model.
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Figure 4: (Upper panel) Added schistosomiasis-induced yield loss due to poverty. Each point on the middle surface
represents the extra loss due to the disease for plots below the respective crop weight and surface quantiles. The
upper and lower transparent surfaces are cluster-bootstrapped 95% confidence intervals. (Lower panel) Losses to
yield suffered by households above and below threshold levels of poverty, defined by the left tail of the joint harvest
weight and plot surface distribution.

Figure 5: (Left panel) Homogeneity of households: original density of yield vs. rescaled density with village
fixed effects partialled out. (Right panel) Distances between villages as spatial weights (inset), and the
estimated spatial correlation.
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Figure 6: (Top left) Added effect of schistosomiasis on yields caused by the presence of a large dam. (Bottom left)
Joint effect of schistosomiasis, distance from water resources networks and dam size. Estimations account for spatial
correlation. (Right) Joint effect of schistosomiasis and distance from dams and water networks. Each point in the
fitted surface represents the effect of schistosomiasis on yield for a village at the corresponding distance from a dam
or a water reservoir: the darker the color, the more negative is the effect.

The interest lies in establishing whether the presence of a large dam affects the magnitude of the effect

of schistosomiasis on agricultural yields, and thus to identify villages in provinces that directly benefit from

the presence of the four main dams. Interacting the presence of a dam with our measure of disease intensity

allows to disentangle the direct impact of dams, which should increase yields, from the deleterious indirect

effects that they may produce by facilitating the diffusion of schistosomiasis. The explicit inclusion of the

dams, however, generates spatial dependence in the data that does not vanish even when controlling for

the highest possible level of unobservables (regions), and therefore for the estimation we rely on a spatial

autoregressive specification (SAR) of the form

yjt = (12j − ρWj)
−1[θ1Ijt + θ21dam + θintIjt × 1dam + X̃jtβ + αt + εjt], (7)

where Wj is a matrix of spatial weights given by the between-villages distance in coordinate degrees and ρ is

the spatial correlation parameter, fit by maximum likelihood. A visual representation of the network of village

distances used as spatial weights is shown in the right panel of Figure 5. The panel also shows how spatial

correlation decays quickly as geographical distance (in coordinate degrees) increases, when the presence

of dams is not included in the analysis. This makes spatial analysis irrelevant for village-level regressions

without the inclusion of the water resources variables, once the appropriate fixed effects are included (region,

province or commune): in Appendix E I show how once dams are included, spatial correlation remains even

after including the same fixed effects, and thus requires the explicit use of the spatial techniques. We report

all details concerning this class of estimates and their relevance for this set of estimations, as well as a full set

of results obtained with different specifications. The upper panel of Figure 6 shows the results of estimating

(7), showing that whilst the presence of a dam increases yield by 23.9% (θ2), the estimate of θint shows

that the average burden due to schistosomiasis increases from a yield loss of 3.7% to 13.6% for villages in

proximity to large dams.

The previous results are refined by accounting for each village’s distance in km from the nearest dam or

water reservoir. The full network of dams and reservoirs is illustrated in panel (b) of Figure 1. I estimate an
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adaptive spline for the interaction term Ijt× distj , with time and region fixed effects. The right-hand panel

of Figure 6 shows how the deleterious marginal effect of schistosomiasis intensity on yield is mitigated as

one moves further away from a dam or a reservoir, as well as how areas with high schistosomiasis intensity

are concentrated within 20 km of a dam or reservoir. Households located in these areas suffer from large

negative feedback effects between schistosomiasis and water resources development; to make matters worse,

the effect of an increase in distance on the marginal effect of schistosomiasis intensity is greater for villages

which display lower disease intensity.

From a policy perspective, it is important to investigate whether it is only large-scale dams that are the

culprits when it comes to the transmission of the disease, or whether smaller scale projects built for livestock

and small-scale irrigation can potentially generate as much of an adverse effect. I interact the presence of

a large dam with the distance from any water infrastructure as well as with the measure of intensity, and

estimate the equation

yjt = (12j − ρWj)
−1[θ1Ijt + θ2distj + θ31dam + θ3intIjt × distj × 1dam + θ2int1Ijt × distj +

θ2int2Ijt × 1dam + θ2int3distj × 1dam + X̃jtβ + αt + εjt], (8)

Results are presented in the lower left-hand panel of Figure 6, and again in Appendix E I report the full set

of results with alternative methods and specifications. The estimate of θ2int2 For villages located within 1

km from a large dam, the average estimated loss due to schistosomiasis is 20.7%. The estimate of the triple

interaction coefficient θ3int shows that an increase of one kilometer in distance from the dam generates an

average 1.6% reduction of the burden of schistosomiasis on agricultural yield: being further away from large

dams is therefore beneficial. The distance effect for villages not in proximity of large dams (θ2int1), however,

is insignificant at any level of confidence: such dams seem indeed to be the main culprits of the feedback

effects. The consequences from the standpoint of poverty and inequality can be substantial: populations

that gain the most from such large irrigation projects often do not correspond to those most exposed to their

deleterious consequences in terms of health and productivity.

6 Theoretical Framework: Disease Dynamics, Household Deci-

sions and Poverty Traps

Let us now examine the joint dynamics of optimal household behavior and schistosomiasis transmission. The

first step is to model the natural dynamics of the disease: we use the following dynamic specification, as

proposed by Woolhouse (1991) and firmly established in the ecology literature:

ṁt = αNst − γmt (9)

ṡt = BHmt(1− st)− βst (10)

In this specification, mt ∈ R+ is the number of schistosomes per person, and st ∈ [0, 1] is the prevalence of

patent infection of snails. The evolution of m depends on the rate at which schistosomes are gained by the
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human population, αNs minus the rate γm at which schistosomes die, where α is the rate of infection with

schistosomes per person per snail, N is the number of snails and γ is the per capita mortality rate. The

evolution of snails depends on the rate if increase in prevalence, BHm(1− s), minus the rate of decrease in

prevalence, βs, where B is the per capita rate of infection of snails per schistosome and β is the per capita

mortality rate for infected snails. Finally, H is the total number of humans, making the term Hm the total

number of schistosomes.

As a first analysis, one can reduce the dimensionality of the dynamic system and use the fact that

β >> γ, since the rate of turnover of the infected snail population is normally much higher than the

schistosome one, and can assume that the prevalence of the snail population is in equilibrium and express

schistosome population dynamics as function of mt alone. This is a perfectly acceptable assumption, as

shown by Woolhouse (1991)3. The model then reduces to

ṁt = α
NBHmt

BHmt + β
− γmt

= αg(mt)− γmt, (11)

where the parameters have the same interpretation as before.

6.1 Disease dynamics as external constraint: endemic states as Nash equilibria

I present a simple model of dynamic household optimization where each household takes disease intensity mt

as exogenous and does not include explicitly its dynamics within its optimization process. This implies that

the model will not describe the joint dynamics of a globally controlled system, as in the case of an omniscient

social planner who considers the joint state of both economy and ecology, but rather the individual decisions

of a farming household who allocates its resources based on the observation of the level of schistosomiasis

intensity they suffer. The aim is to endogenize the infection rate with individual behavior and optimization,

in order to represent feedback effects of poverty, related to general health and sanitation characteristics

as well as access to clean water. I therefore augment the standard model given by (11) with an infection

parameter dependent on household wealth, given by α(x), where αx < 0, αxx ≥ 0.4 One can make this

function dependent on the moments of the wealth distribution P(x), such as the area-wide average level

of wealth x̄, depending on the geographic scale of the model (region, province or even village), or include

the effect of variance or other dispersion measures. I also set α(0) = α, where the parameter α represents

a “maximum” level of schistosome to human transmission if wealth is identically zero. One therefore has

an “internal” system, comprised by the household’s evolution of wealth and the consequent consumption

dynamics, and an “external” system, where the disease dynamics come into play and continuously affect

household decisions. This is because the real interest is in a framework that can help explaining the empiri-

cal findings of farming households experiencing persistent schistosomiasis-driven poverty states, rather than

one that concerns global optimal choices. This modeling framework is simple but goes a surprisingly long

3It can be shown that the dynamics of the resulting model and the remainder of the paper’s conclusions are unaffected
by this assumption, whilst allowing for simplified algebraic manipulations. I therefore resort to the one-equation model for
schistosome evolution in all that follows

4The convexity assumption is to represent the effect of wealth on the human-schistosome contact function having a large
marginal effect in a state of poverty, decreasing as wealth increases. In any case, the assumption on the second derivative does
not affect any conclusion of the model, and is therefore left as a modeling guide for numerical analyses.
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way in explaining our empirical findings. Furthermore, an attractive feature stemming from its simplicity

is that a full exploration of its properties is explictly available, as well as the uncovering of a wide range of

possible local dynamics around the multiple fixed points. The explicit nature of the results allows for precise

characterizations of the global system dynamics without having to resort to numerical analyses which, whilst

of fundamental importance, depend crucially on parameter choices.

Let us assume a household agricultural production function given by Yt = F (xt,mt, lt), where Yx, Yl >

0, Yxx, Yll < 0, Ym < 0, where the impact of schistosomiasis is compatible with a Hicks-neutral productivity

shock calibrated by θ > 0. As shown by the empirical results, a modeling choice that is compatible with the

data is a function of the form

Yt := F (xt,mt, lt) = A(1 +mt)
−θf(xt, lt,K), (12)

although in all what follows we choose to keep the functional form completely general. The production

technology f(.) is also made dependent on a set K of n inputs Ki, i ∈ 1, . . . , n, not subject to optimization,

such as available non-purchased cropland and climate variables, as well as within-household available labor.

Coherently with our empirical evidence, we include in the production function the entire set of inputs

optimized separately, implying the equivalence between household optimization and profit maximization, and

without interdependence between input allocation and schistosomiasis intensity. I posit a standard separable

optimization problem in which a continuum of farming households optimizes with respect to consumption

and hired labor, disease dynamics are not known by the household and the disease intensity mt is taken as

an exogenous time-varying production factor. One then has

max
c,l

∫ ∞
0

e−ρtu(ct)dt (13)

s.t. ẋt = F (xt,mt, lt)− δxt − ct − wlt
xt ≥ 0 ∀t

[x0,m0] = [x0,m0] ∈ R+. (14)

where u(.) is the concave household utility function, ρ is the discount factor, F is the production technology

as given by (12), w is the exogenous wage and δ is the household wealth depreciation (in an agricultural

setting, this can be interpreted as the harvest loss). As stated before, this implies that the household’s

consumption decisions and wealth are continuously affected by the presence of the disease, as it’s directly

affecting agricultural productivity and observed yield. However, the household does not account explicitly in

its decisions for the disease dynamics and how their production outcome can affect its evolution, and simply

considers the suffered level of schistosomiasis intensity as a time-varying parameter, akin to an exogenously

determined price. The wealth-dependent schistosome-human contact function becomes therefore a positive

externality of the optimization process of the farming households.

It’s easily seen that labor is optimized in a static way and l∗t = F−1l (w) for all t, coherently with the

separable nature of the problem which implies that the optimal labor allocation is equivalent to a profit-

maximizing one5. At each time step the optimal hired labor supply is a continuous function of the state,

5In order to be consistent with our empirical results, we would have to set ∂ logF (x,m, l)/∂ log(1 +m) = −θ, since partial
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and clearly ∂l∗/∂x > 0, ∂2l∗/∂x2 < 0 and ∂l∗/∂m < 0. We substitute in the wealth dynamics the optimized

labor supply, depending now only on wealth and disease, and write F (xt,mt) = F (xt,mt, l
∗
t )−wl∗t . Assuming

parameter sets such that the dynamic optimization allows for non-degenerate optima 6, this “new” production

function retains the same characteristics as the original, namely Fx > 0, Fxx < 0, Fm < 0. Consumption is

optimized in a dynamic way: by a standard procedure the dynamical system of interest is therefore given by

the dynamics of the vector zt = [xt,mt, ct], comprised of two state variables and one internal forcing (the

control). It can be written as

ẋt = F (xt,mt)− δxt − ct
ṁt = α(P(x))g(mt)− γmt (15)

ċt = − u
′

u′′
[Fx(xt,mt)− (δ + ρ)] .

The system (15) is paired with a standard endpoint condition on consumption and co-state (limiting to

zero in infinite time) allowing for non-explosive behavior. We are here considering a continuum of farming

households who do not consider explicitly the disease dynamics, but their production output (wealth) affects

the human-schistosome contact function. The resulting paths of the system (15) are Nash equilibria rather

than socially optimal outcomes, deriving from the fact that the externality of wealth on disease α(P(x)) is

the outcome of production decisions of identical agents without any incentive to deviate from the “internal”

optimization process, where schistosomiasis is exogenously determined. We therefore have α(P(x)) = α(xt),

and density effects are equivalently represented by individual trajectories. Agents being identical is evidently

a rather strong simplifying assumption, but it is also not rejected by the homogeneity of farming households

observed in the data (see the right panel of Figure 5).

The disease dynamics (11) allow for two distinct disease equilibria: the first, is a disease-free one that

generates a steady state z∗df = {x∗df , 0, c∗df}, in which the levels of wealth and consumption x∗df , c
∗
df are

identical to the standard optimization problem without the presence of the disease. The second is the

endemic equilibrium given by

m∗e(xt) =
α(xt)N

γ
− β

BH
= m∗e(xt). (16)

which depends on the level of household wealth xt. Since αx < 0, the poorer the households are and the higher

will this endemic level be. Associated to this endemic level of disease there will be an endemic steady state

z∗e = {x∗e,m∗e, c∗e}, with associated equilibrium levels of household wealth and consumption x∗e, c
∗
e, and the

resulting endemic level m∗e(x
∗
e). If m∗e(x

∗
e) > 0, then an endemic equilibrium is both possible and compatible

with household wealth dynamics, and setting the time derivative of wealth and consumption in (15) to zero

at m∗e one obtains immediately that the endemic levels of wealth and consumption are strictly inferior to

its disease-free counterpart, i.e. x∗e < x∗df , c
∗
e < c∗df . It is therefore a equilibrium Pareto-dominated by the

disease-free one, with lower consumption and lower wealth, as well as a higher disease incidence implying

derivatives in factor input regressions were consistently estimated at zero. This implies that we would require l∗t = f−1
l (w),

thus imposing that the farming household maximizes profits without the presence of the disease, thus adding another degree of
separability in the overall optimization process. This does not affect the nature of the solutions, since F (x,m, f−1

l (w))−wf−1
l (w)

remains a function increasing and concave in x and decreasing in m for all admissible parameter sets, although the overall
magnitude of the marginal effects would clearly change.

6Namely, that ∂F (x,m)/∂x > 0, which holds using the estimates obtained in the agricultural regressions.
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Figure 7: Pareto-dominated endemic equilibria with both wealth and optimal consumption lower than the
disease-free counterparts x∗df , c

∗
df . As the marginal effect of the total burden of schistosomiasis (1 + m) on

agricultural production (Y ) increases, the associated endemic equilibria exhibit increasingly higher levels
of disease intensity and lower levels of wealth and consumption. We model the wealth-dependent human-
schistosome contact function as α(x) = α/(1 + x)s, with s = 0.5, and a Cobb-Douglas production function
calibrated using the empirical estimates.

reduced household health and overall welfare. The difference between the two equilibria depends continuously

on the model parameters, particularly on the incidence of schistosomiasis in the production function θ, and

we have that dx∗e/dθ < 0, as shown in Figure 7. If m∗e(x
∗
e) < 0, then no endemic equilibrium is possible, and

the system allows only the disease-free steady state. The disease-free case only represents the case of all the

regions and countries in which there is no schistosomiasis and an endemic state cannot be sustained: this can

be a consequence of numerous factors, such as greater wealth, lower infection parameters or low suitability

for snail habitat. For such systems, even if the disease was introduced by external contagion, the dynamics

of the system eventually fade the disease intensity to zero in finite time. This case is of limited interest here,

as we focus on the case where the disease can generate a persistent adverse burden: from now on we will

only allow parameter sets that generate a positive endemic level of schistosomiasis, i.e. m∗e(x
∗
e) > 0, and

study the characteristics of both the equilibria.

The determinant of the system’s Jacobian evaluated at the disease-free equilibrium is given by

detJ(x∗df , 0, c
∗
df ) =

(
α(x∗df )g′(0)− γ

)(
− u
′

u′′
(c∗df )

)
Fxx(x∗df , 0).

Since Fxm < 0, one can immediately see that the term ∂ṁt/∂mt plays a crucial role in determining the

behavior of the system at the disease-free equilibrium: simplifying the expression one obtains that such

quantity is positive if

α(x∗df )
BHN

βγ
> 1. (17)

The left-hand side quantity in (17) is known as the R0 of the disease, or its reproduction rate: this inequality

is the condition for endemicity for the disease, which controls whether asymptotically the disease will reach
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either the disease-free or the endemic equilibrium depending on whether this quantity is below or above

unity. In our framework, this indicator is now wealth-dependent, and allows to explore the feedback effects

of poverty on the disease diffusion and viceversa. If there were no such wealth effects and α(x) = α, then

this quantity would simply be a scalar determined by the “natural” disease parameters, and if R0 < 1 no

endemic state would be possible, regardless of household choices.

The key role played by this quantity is seen by studying the eigenvalues of the system Jacobian evaluated

at the disease-free equilibrium: they are given by

λ1 = γ
(
R0(x∗df )− 1

)
λ2 =

−ρ−
√
ρ2 +

∣∣∣− u′

u′′ (c
∗
df )Fxx(x∗df , 0)

∣∣∣
2

λ3 =

−ρ+

√
ρ2 +

∣∣∣− u′

u′′ (c
∗
df )Fxx(x∗df , 0)

∣∣∣
2

,

all three real and of which one is negative (λ2) and one is positive (λ3). This makes the disease-free

equilibrium saddle-path stable, except for the case in which R0(x∗df ) = 1 which makes the equilibrium non-

hyperbolic. In this case stability cannot be determined a priori, and the local linearization may not be

appropriate: however, R0 determines whether schistosomiasis converges to zero or the endemic equilibrium,

implying that the subspace {x,m, c} ∈ R3 such that R0(x) > 1 around z∗df generates the manifold tangent to

the unstable subspace of J∗df , associated to λ3, and the subspace such that R0(x) < 1 generates the manifold

tangent to the stable subspace associated to λ2. If R0(x∗df ) 6= 0, then it determines the direction of the

system trajectory upon perturbation based on whether it is greater than one or not. If R0(x∗df ) > 1, the

system is an unstable saddle with a two-dimensional unstable manifold since λ2 < 0 < λ3 < λ1, implying

that a perturbation of the initial disease-free state pushes the system away towards the endemic equilibrium

unless the initial condition is on the only one-dimensional stable manifold. This result is intuitive: if even

at the disease-free equilibrium the reproduction rate is greater than unity, the system is prone to disease

endemicity and will tend towards the Pareto-dominated state. If λ1 < 0, the disease-free equilibrium will

be an attracting saddle, with only one unstable manifold corresponding to initial conditions generating a

R0(x0) > 1.

It is of particular interest to study perturbations of this equilibrium: it’s important to see whether shocks

to either disease intensity, via its introduction via external contagion, or to wealth push the system towards

the endemic state or ultimately allow the system to remain on the disease-free one. It’s straightforward to

see that |λ2| ≥ |λ3|: and since λ2 < 0, λ1 is the only potential cause of trajectories that tend to escape

away from the disease-free equilibrium. This is because the dominant eigenvalue (the one with the largest

real part in absolute value) determines where the system is asymptotically pushed to move towards, on the

corresponding dominant eigenvector. If the dominant eigenvalue is λ1 (i.e. |λ1| > λ2), then the asymptotic

trajectory of the system will be on the eigenvector e1 = (−sign(λ1) × | ~dx|, ~dm,−sign(λ1) × |~dc|). If λ1 is

positive and is the dominant eigenvalue, the wealth-dependent R0 of the disease-free equilibrium is strong

enough to dominate the other force that would bring the perturbed system back to the disease-free state (λ2),

which is function of household characteristics. This implies that the disease increases within the system at a
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faster rate than its decrease caused by greater household wealth, and therefore asymptotically the perturbed

system will move towards the endemic state. This is because the corresponding dominant eigenvector e1

points towards a state with lower wealth and consumption and higher disease intensity since in dt we have

dm > 0. On the contrary, if |λ2| > |λ1|, perturbations ε of the equilibrium eventually bring the system back

to the stable manifold and then to the disease-free equilibrium, since R0(x∗df + ε1) < 1 where ε1 is the first

element of the perturbation vector. This is better seen by using Morse’s lemma for the direction of perturbed

initial states:

F (z + ∆z) = F (z) +
1

2

rank(J)∑
i=1

λi∆v2
i ,

where ∆ vi are the new parameters of the model corresponding to the motion of the system along the corre-

sponding eigenvectors e1. This means that the overall trajectory is determined by the dominant eigenvalue,

which will push the perturbed system to a path along an eigenvector with positive values: wealth and dis-

ease intensity increase, consumption shifts to the stable manifold and wealth starts decreasing because of the

increase in schistosomiasis. If the perturbation didn’t push R0(xdf + ε1) beyond the endemicity threshold,

the increase in disease intensity eventually starts to diminish and reaches the disease-free equilibrium.

One now needs to study the characteristics of the endemic equilibrium, which allows for more involved

dynamics. I can now show that there exist three possible scenarios, depending on the magnitude of the

corresponding disease reproduction rate: two are saddle points, one repelling and another attracting, and

the third is a fully attracting state (a trap). We begin by studying the determinant of the associated Jacobian,

which is given by

detJ∗e =

(
u′

u′′
(c∗e)

)[
α′(x∗e)g(m∗e)Fxm(x∗e,m

∗
e)−

(
α(x∗e)g

′(m∗e)− γ
)
Fxx(x∗e,m

∗
e)

]
(18)

Since u′/u′′ is negative, α is decreasing in wealth, F is increasing and concave in wealth and decreasing in

m, a key condition for the negativity of the “endemic” Jacobian determinant is given by the sign of the term

α(x∗e)g
′(m∗e)− γ. If this term is positive, the determinant is univoquely negative. Substituting in this term

the endemic level of disease as a function of x∗e, one can show the positivity condition to be equivalent to

α(x∗e)NBH

βγ
= R0(x∗e) < 1, . (19)

which is the wealth-dependent R0 of the disease evaluated at the endemic equilibrium. Note that positivity

of the term α(x∗e)g
′(m∗e) − γ is now guaranteed if the R0 at the endemic equilibrium is smaller than unity.

This is the opposite of the disease-free case: it is intuitively so, since the nature of the two equilibria is

connected to the respective R0(x). A repelling nature for the disease-free equilibrium is connected to a

reproduction rate higher than unity: for the endemic equilibrium we have a similar condition. The condition

is not anymore dependent on the unity threshold, since if R0(x∗e) < 1 the endemic equilibrium is not feasible.

Furthermore, since ∂R0(x)/∂x < 0, if the endemic equilibrium is not feasible then certainly R0(x∗df ) < 1, and

the only possible equilibrium and the global attractor will therefore be given by the disease-free one given

by the triplet (x∗df , 0, c
∗
df ), which exhibits saddle-path stability and one unstable manifold. So R0(x∗e) > 1:

however, this condition is not sufficient for a description of the system dynamics around this equilibrium.

If R0(x∗e) > 1, then there exists a feasible Pareto-dominated equilibrium z∗e = (x∗e,m
∗
e, c
∗
e) with lower
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consumption and wealth and higher disease intensity. The nature of this equilibrium is slightly more involved

than the disease-free case, since the eigenvalues can be obtained in closed form but the expressions are very

large and not informative. We can however obtain analytical results on their sign by studying the form of

the characteristic polynomial of the Jacobian at the endemic equilibrium: we have a left asymptote at ∞
and a right one at −∞ , and a y−intercept given by the determinant of the endemic Jacobian. It’s easily

shown that one of its inflection points has to be on the negative axis, therefore one eigenvalue has to be

negative. The sign of the other two is therefore determined by the sign of detJ∗e : if positive, another root

of the characteristic polynomial has to be also negative, and if negative the system has either two positive

eigenvalues or three negative ones7. The size of the endemic reproduction rate R0(x∗e) is therefore again

key in determining the nature of the Pareto-dominated equilibrium. Breaking condition (19) is however not

sufficient for changing sign of the determinant at the endemic equilibrium: this equilibrium is non-hyperbolic

if

∆R0(x∗e) :=
R0(x∗e)− 1

R0(x∗e)
=

1

γ

∣∣∣∣Fxm(x∗e,m
∗
e)

Fxx(x∗e,m
∗
e)

∂ṁ

∂x
(x∗e,m

∗
e)

∣∣∣∣ , (20)

which happens when the percentage deviation of the endemic R0 from the threshold reaches a quantity equal

to the curvature ratio of the production function inputs, modulated by the slope of the human-schistosome

contact function, representing the tradeoff between the decreasing returns to scale of wealth and its decreas-

ing effect on the disease diffusion.

If ∆R0(x∗e) is positive but smaller than the right-hand quantity in (20), then the endemic equilibrium is

a repelling saddle, and the disease-free is attracting. This implies that most trajectories except for the single

one-dimensional stable manifold will push away from endemicity and towards a disease-free state: this is a

consequence of the R0 being high enough to allow the existence of an endemic equilibrium, but not high

enough to attract most trajectories to it. If ∆R0(x∗e) is greater than the quantity in (20), the equilibrium

becomes attracting. There can still exist a manifold for which the system is pushed away, making the equilib-

rium an attracting saddle, but most initial conditions will attract towards it. This condition is based on the

strength of the wealth-dependent reproduction rate to exceed an amount proportional to the interaction of

household production characteristics and the positive externalities of wealth on disease diffusion. Note that

the unstable manifold can lead both outside the R0 = 1 surface and towards zero wealth and consumption.

If the initial condition on wealth, schistosomiasis and consumption puts the household outside the part of

the unstable manifold that allows it to escape the Pareto-dominated equilibrium and reach the disease-free

state, then it will be trapped inside a state with high disease, low wealth and low consumption. The un-

stable manifold is however one-dimensional and unlikely to be reached by a random perturbation. This is a

consequence of the household optimizing within an “internal” system, where schistosomiasis is exogenously

given, but the actual wealth dynamics being determined by the “external” system, in which the disease

dynamics are determined by wealth-driven Nash outcomes. It is furthermore driven by incomplete infor-

mation: the household optimizes within a non-autonomous system, where the disease evolves exogenously

in time and in which the household cannot be able to extrapolate which manifold would allow it to escape

the poverty state, for example by modifying the labor choice or by a temporary modification of consumption.

There can be however a scenario in which the Pareto-dominated equilibrium is entirely unavoidable, and

7This is also implied by the determinant being the product of the eigenvalues.
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Figure 8: Schematic representation of the nature of the different equilibria. If the R0 at the endemic
equilibrium is less than unity, only a disease-free state is possible. If this rate dominates the household-
driven conditions, the endemic equilibrium is an attracting saddle. If this quantity remains greater than
unity after a local perturbation of the equilibrium, a poverty trap is created.

even if the household was aware of the external constraint generated by the disease dynamics. It can be shown

that the Jacobian of the system (15) evaluated at the endemic state identifies a fully attracting equilibrium

- a sink, where all three eigenvalues are negative - if the following conditions are satisfied, corresponding to

the Routh-Hurwitz stability criterion8:

∆R0(x∗e) >
ρ

γ
(21)

1

γ

(
Fm(x∗e,m

∗
e)α
′(x∗e)g(m∗e) +

u′

u′′
Fxx(x∗e,m

∗
e)

)
< ρ∆R0(x∗e) (22)(

ρ− γ∆R0(x∗e)

) (
∂ṁ

∂x

∂ẋ

∂m
+
∂ẋ

∂x

∂ṁ

∂m
+
∂ċ

∂x

∂ẋ

∂c

)∣∣∣∣
z∗e

+ det J∗e > 0. (23)

Condition (21) imposes that the proportional deviation of the R0 at the endemic equilibrium from the unity

threshold exceeds an amount equal to the ratio between the household’s intertemporal discount rate and the

schistosome death rate, and therefore is an “absolute” criterion on the magnitude of the disease’s evolution

rate. Condition (22) imposes a condition on the lifetime discounted endemic evolution rate. It has to exceed

an amount that sums the marginal effect of the disease on the household decision system (the marginal

effect of disease on production times the marginal effect of wealth on disease diffusion) with the marginal

effect of wealth on optimal consumption. Note that the argument in parenthesis is always positive. This

criterion compares disease impact magnitude with the household structure, and intuitively corresponds to

8See for example Takayama (1985) for an exposition of the related theorems. The result stems from straightforward algebric
computations, albeit lengthy, of the characteristic polynomial of the Jacobian and the application of these conditions, and its
proof is therefore omitted.
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a “harmful” part dominating a “beneficial” one, where the disease evolution weighed by its negative effects

on productivity is strong enough to overweigh the reduction of disease intensity generated by higher wealth.

Condition (23) extends the previous conditions and imposes another bound on the magnitude of the R0 at

the endemic equilibrium, weighed by the local system dynamics around the fixed point. It imposes that

the magnitude of the disease reproduction rate at the endemic equilibrium, large enough to satisfy (21),

needs to be large enough to keep dominating the “net” positive effects of wealth and to be robust to a local

perturbation.9 If the schistosomiasis reproduction rate at the endemic equilibrium satisfies conditions (21),

(22) and (23), then this Pareto-dominated states is a sink, attracting all trajectories around, characterized by

extremely low wealth and consumption and a high disease intensity. In this extreme case, even if a household

was aware of the disease dynamics, unless its initial levels of wealth, disease and relative consumption allow

for a decreasing level of mt in dt, implying a negative R0(xdt), it will be drawn by the increasing levels

of disease and consequent decreases in wealth towards this extreme state of poverty. The key role played

by the joint dynamics of wealth and disease intensity in determining the nature of the equilibria, via the

wealth-dependent disease reproduction rate, is summarized in Fig.8.

This hints at the nature of the wealth-dependent basic disease reproduction rate R0(x) as a separatrix

on the {x,m, c} ∈ R3 manifold for the basins of attraction of each equilibrium, and determines the ultimate

outcome of the system given specific initial conditions. This is indeed the case: the plane on the {x,m}-
subspace such that

N

γ
(R0(x)− 1) =

R0(0)

α
m (24)

is the boundary at which the derivative of the schistosomiasis trajectory changes sign10. Figure 9 shows

this phenomenon for two different magnitudes of α′(x): integrating numerically ṁt in time for both m

and x one can see that for the “higher” α′(x) there exists a threshold level of wealth x̄ at which the R0

falls below unity and the disease starts converging towards the disease-free equilibrium. Since α(x) is con-

tinuous and is at least C1, the subspace {x̄, m̄, c} ∈ R3 is compact, and acts as separator for the two equilibria.

The system trajectory therefore depends on its initial condition and on which side of the separatrix sur-

face {x,m, c} that generates a R0(x) = 1 it is on. Note that (24) implies that if initial wealth is such that

R0(x0) < 1, then for all initial levels of disease the m0 > 0 the instantaneous mt will decrease, pushing the

system towards the disease-free state. This is because in an instant dt if for any initial state with optimal

control z0 = [x0,m0, c0] that impliesR0(x0) < 1, we have ṁt < 0 and ẋt > 0, increasing instantaneous wealth

and shifting the relative consumption level on the stable manifolds towards the disease-free equilibrium. The

opposite happens if the initial state generates a R0(x0) > 1. In the case of perfect equality on the R0,

the dominant eigenvalue will dictate in which basin of attraction will the system end up in, and has to be

determined numerically. The separatrix surface is continuously dependent on the model parameters, and is

continuous on the {x,m, c} ∈ R3 space. If it crosses the disease-free equilibrium, implying that it generates

a R0(x∗df ) > 1, this causes one of its eigenvalues to switch sign due to the fact that Fxx(x∗df , 0) is small

compared to the household’s ratio of intertemporal utility substitution.

9Note that condition (22) is satisfied if (20) holds, implying that det Jz∗e < 0.
10The sign change happens assuming the initial state is below the endemic level: if the initial condition m0 is above the

endemic level, then the trajectory will decrease in any case for all levels of wealth, but asymptotically reaching zero if wealth
surpasses the separator threshold.
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Figure 9: Disease trajectories for different levels of wealth. The red surface (above) shows that as wealth
increases, the endemic level of schistosomiasis decreases but its corresponding equilibrium remains feasible.
Here we model the wealth-dependent human-schistosome contact function as α(x) = α/(1 + x)s, with
0 < s < 1. The blue surface (below) shows that if α′(x) is high enough, for a threshold level of wealth
(dashed red line) the disease dynamics tend away from the endemic equilibrium and towards a disease-free
state. The threshold level of wealth and the corresponding surface on {m, c} is the separatrix for the basins
of attraction of the two equilibria.

The joint dynamics of schistosomiasis and wealth can therefore generate a poverty trap, depending on

whether the initial conditions of {x0,m0} and the associated c0 put the household on a trajectory attracted

to the endemic equilibrium. The escape boundary for such a trap is the surface {x̄,mt, ct} on the subspace of

R3 where R0(x) = 1, which intersects the disease-free equilibrium’s two-dimensional stable manifolds. This

trap is however not necessarily a consequence of the absence of an escaping path, such as in the case of the

endemic equilibrium being a sink: if the farming household was aware of the joint dynamics of production

and schistosomiasis, then if the trap is not entirely attracting (the endemic equilibrium being an attracting

saddle) it could adjust consumption, for example by shifting part of it in the future in order to move the

wealth towards the escape boundary and ultimately avoid being stuck in such an undesirable state. In other

words, a possible trap can be generated by the farming households being unaware of the joint effects of

development and disease diffusion. In a scenario of an “absolute” poverty trap, where the endemic state is

attracting, the only ways to escape the disease-driven trap without changing the structural parameters would

be to shock the initial state either by reducing substantially the disease intensity by large-scale eradication

projects or increasing household wealth, to the level at which the initial reproduction rate R0(x0) goes

below unity. In the case of a “relative” trap, where the endemic state remains a saddle point, another

strategy to avoid this state of poverty generated also by limited information would be to increase awareness

of the population of the disease dynamics, such as the importance of clean water access and better sanitary

conditions connected to higher household wealth.

6.2 The role of fluctuations: parametric noise

Let us now extend the evolution equation of schistosomiasis for the more realistic case in which some

parameters vary in time, representing a natural source of system stochasticity due to the natural fluctuations

in the environment. Let us for simplicity assume uncorrelated randomness in the parameters, and model this
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noise source as a Gaussian source. The evolution equation of schistosomiasis given by (11) now is defined as

the nonlinear stochastic differential equation

dmt =

(
α(xt)

NBHmt

BHmt + β
− γmt

)
dt+ σ(mt)dWt

= (α(xt)g(mt)− γmt)dt+ σ(mt)dWt (25)

in the filtered probability space (Ω,F , P ), where Wt is the standard Brownian motion and σ is a Lipschitz

continuous function. The measure of schistosomiasis prevalence is now continuously perturbated by fluctu-

ations with a state-dependent density coefficient. This is a natural consequence of the parametric noise: as

an example, assume that at every instant t the death rate of schistosomes γ becomes < γ + σξt >, where

ξ is white noise and σ ∈ R+. The parametric fluctuations are therefore proportional to the level of schis-

tosomiasis intensity mt, and in differential form require an increment of the form σmtdWt, which implies

that equation (25) is continuously affected by lognormal fluctuations. Equation (25) has drift and diffusion

coefficients uniformly Lipschitz continuous. The diffusion one is so by assumption, and for the drift we have

lim
x→∞

α(x)g(m) = 0 , lim
x→0

α(x)g(m) = αg(m)

lim
m→∞

g′(m) = 0 , lim
m→0

g′(m) =
BN

β

where α(x) is at least C1 by assumption. The last result, boundedness of the derivative, allows to say that

for all m,n ∈ R+ there exists a m1 ≥ g′−1(BN/β) such that

α(x)g(m)− α(x)g(n) ≤ α(x)g′(m1)(m− n)

for all x because of the mean value theorem. We then have

||g(m)− g(n)|| ≤ K1||m− n||,

where K = g′(0), which is the condition of Lipschitz continuity for the drift, since for the −γm part it is

trivially satisfied. Since for the diffusion coefficient we have that ||σ(m)− σ(n)|| ≤ K2||m− n||, one can see

that

||g(m)− g(n)||+ ||σ(m)− σ(n)|| ≤ K̃||m− n||.

where K̃ = K1 + K2. This allows for a square-integrable, nonanticipating path mt as the solution of (25)

with initial condition m0 for all values of the system z ∈ Z, and this solution is unique.

The probability density of the disease intensity P (m, t) is therefore continuously determined by the

household’s production and consumption decisions. The system defined by (25) and the joint household

optimization problem, for an initial observation of z0 = [x0,m0, c0], is therefore fully characterized by the

Kolmogorov forward equation with simultaneous dynamic constraints, and is a system of mixed ordinary

and partial differential equations given by
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∂tP (m, t) = ∂mm
σ(m)2

2
P (m, t)− ∂m

[
α(x)g(m)− γm

]
P (m, t) (26)

∂tx = F (x,m)− δx− c

∂tc = − u
′

u′′
[Fx(x,m)− (δ + ρ)] .

x0 = x0, c0 = c0, P (m, 0) = δ(m−m0),

where δ(.) is the Dirac mass function. This system is then solved forward in time. The non-stationary density

has clearly no analytical solution, but writing (26) in non-divergence form sheds light on the probabilistic

nature of the feedback effects of wealth on the disease distribution:

∂tP (m, t) =
σ(m)2

2
∂mmP (m, t)−

[
α(xt)g(m)− γm

]
∂mP (m, t)−

−
[
α(xt)g

′(m)− γ − σ′′(m)

]
P (m, t).

This shows that the difference between the deterministic disease evolution growth rate ∂ṁ/∂m and the

variance of the fluctuations determines the probability flow in the random dynamical system. To see this,

remembering that the schistosomiasis intensity is exogenously observed by the household at every dt who

immediately adjusts after each fluctuation in m, assume that the fluctuations start at the deterministic

endemic equilibrium z∗e = [x∗e,m
∗
e, c
∗
e]. In dt, probability starts evolving according to

∂tP (m, t) =
σ(m)2

2
∂mmP (m, t)−

[
α(dx∗e)g(m)− γm

]
∂mP (m, t)−

[
γ∆R0(dx∗e)− σ′′(m)

]
P (m, t), (27)

as well as the dynamic constraints on wealth and consumption. We define dx∗e as the instantaneous variation

of the “new” endemic equilibrium for wealth due to the fluctuations in m, since random dynamical systems

are intrinsically non-autonomous. As m approaches zero11 we have

∂tP (m, t) =
σ(m)2

2
∂mmP (m, t)−

[
α(dx∗df )g(m)− γm

]
∂mP (m, t)

+

[
γ(R0(dx∗df )− 1) + σ′′(m)

]
P (m, t).

The flow of probability therefore is a result of the interplay between the curvature of the diffusion coefficient

(σ′′(m)) and the disease evolution rate, which becomes the reproduction rate R0. A R0(dx∗e) greater than

unity, net of fluctuation size, helps draw the probability towards a stationary measure centered on the

deterministic endemic state ve as initial condition for the household, while a R0(dx∗df ) smaller than unity

allows a household that starts near the disease-free state to be attracted towards a state of low disease

intensity. This hints towards the nature of the two equilibria as pullback attractors (or random attractors),

if the magnitude of the fluctuations is not too large, and the human-schistosome contact function as the

key determinant of the stationary dynamics. Since if m0 6= 0 the boundary m = 0 is inaccessible, and so

is m = ∞ because of the form of the drift on (25) and exploding trajectories of xt are ruled out by the

11Lognormal fluctuations do not allow m to effectively hit the lower boundary.
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Figure 10: Monte Carlo simulated empirical density heatmap for joint wealth and disease states for initial
conditions (black dots) not far from the deterministic steady states (red dots). We see evidence of the nature
of the deterministic equilibria as pullback attractors. Left panel: disease-free equilibrium for A = 1, θ = 0.05.
Right panel: endemic equilibrium for A = 1, θ = 0.2. For both we have a geometric diffusion coefficient with
σ = 0.05, elasticity of wealth 0.5, δ = 0.1 and disease parameters chosen so that the natural R0 is around
1.5. Production parameters used come from the empirical estimations. The empirical density is obtained by
binning the data, limiting bin size to zero and estimating the joint density. 5000 simulations done with a
Milstein scheme for the SDE and, for the two ODE, an exponential integration method for stiff systems.

household’s transversality conditions, we have that the stationary density for ∂tP = 0, Ps(m) is obtained by

integrating twice the system (26) with a vanishing left-hand side, and is given by

Ps(m) = N exp

(∫ m [α(F−1x (ρ+ δ)(ν))g(ν)− γν
σ(ν)2

− 2
σ′(ν)

σ(ν)

]
dν

)
(28)

where
∫ x

f(x)dx is the antiderivative of f(x) and N normalizes the density to 1. This is a gamma-type

distribution. We note that since α(x) and g(m) are both bounded We note that if the initial state of the

disease is at the disease-free equilibrium, then z∗e = [x∗e, 0, c∗e] is in fact a steady state for both stochastic

and deterministic system, since on that point dmt = 0 for all t. The random dynamical system admits an-

other attracting state with a stationary distribution, whose density is centered around the contact function

evaluated at the deterministic long-run value of wealth. The deterministic equilibrium of household wealth

and consumption, therefore, shapes the stationary disease density. The wealth process, being function of

the disease intensity, also becomes a stochastic quantity, and because of the form of the production function

(12) its stationary density is of the inverse gamma-type. Figure 10 presents Monte Carlo density estimates

of the simulated system that shows that from initial conditions not too far from the deterministic steady

states the stochastic system converges in probability to these states, if fluctuations are not too large. This

is consistent with the nature of the equilibria as pullback attractors, with probability flow regulated by the

(now stochastic) wealth-dependent R0.

For the deterministic case, well-behavedness of the system and boundedness of its trajectories was guar-

30



anteed by the nature of the dynamics and the transversality condition. The stochastic case requires more

attention, and let us therefore be more rigorous. The random dynamical system that defines the state

zt = [mt, xt, ct] given by

d zt = A(zt)× dt+ σ × dWt (29)

A(zt) = [ṁt, ẋt, ċt]
′

σ = [σ(mt), 0, 0]′,

is defined on a complete metric space (Z, d), Z ∈ R3 equipped with an appropriate distance function d, with

a σ-algebra over the filtered probability space (Ω,F , P ), and is a measurable map ϕ : R+×Ω×Z → Z given

by (t, ω, z)→ ϕ(t, ω)z such that

ϕ(0, ω) is an identity map, i.e. maps on itself

ϕ(t, ω) : Z → Z is continuous

ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) ∀t, s ∈ R+.

The last property is known as the cocycle property, where θs is the Brownian shift, defined for each t as

θt : Ω→ Ω, ω → ω̄ s.t. θtωs → ω̄s := ω̄s = ω(t+ s)− ω(t)

for all s in the sample space Ω. Attractors in this random system are therefore intrinsically connected with

the nature of pullback attractors for non-autonomous systems12, similarly to the “internal” non-autonomous

nature of the household optimization problem, which considers the disease dynamics as exogenous time-

varying parameters. Following Crauel et al. (1997), a random set ω → E(ω) is said to be a random

(pullback) attractor for (29) if it satisfies three conditions. First, it’s a random compact set with respect to

the probability measure P , implying that the distance on the metric space (Z, d) between any z ∈ Z and

E(ω) is measurable. This is easily seen to be satisfied since unbounded trajectories in x are excluded by the

household’s transversality condition and θt is by definition F-measurable. The second is that E must be

invariant, i.e. ϕ(t, ω)E(ω) = E(θtω) for all t. This property is confirmed by inspection of the structure of the

noise source in (29), where the fluctuation of the Brownian motion is proportional to the system state: we

have therefore E(θtω) = zt+dt = żt+ztθt = A(z)+ztθt = ϕ(t, ω)E(ω). The third property is the connection

with pullback attraction, and requires that for every set V ⊂ Z we have

lim
t→∞

d(ϕ(t, θ−tω)V,E(ω)) = 0, (30)

where we use the distance measure d appropriate for the relative metric space (Z, d)13. Time therefore

is let go to minus infinity, hence the pullback nature of the attraction, and the distance between all past

trajectories of the map defined by the system (29) and the attractor set E goes to zero. This property is what

allows us to characterize the attracting set of the deterministic equilibria: it’s a standard result that if the

pullback attractor is bounded in the past then it can be characterised as the union of all global solutions that

12To see this, interpret the presence of noise as a continuous exogenous modification of the deterministic system trajectories,
thus effectively transforming the autonomous controlled system (15) to a non-autonomous one.

13Usually the Hausdorff semi-distance is used, defined as d(A,B) = supa∈A infb∈B |a− b|.
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are bounded in the past (Carvalho et al., 2012). Assuming for simplicity a geometric diffusion coefficient,

and thus lognormal fluctuations, We can therefore transform the random system (29) in a deterministic

non-autonomous system, by rewriting the equation of the disease evolution to

ṁt = α(xt)g(mt)− γtmt, (31)

where γt = γ−σWt, together with the deterministic dynamics of wealth and consumption. We immediately

notice that the disease-free equilibrium satisfies (30) trivially: for m0 = 0 any fluctuation is set to zero,

and limiting time to minus infinity continues yielding bounded trajectories identically equal to zero, and the

system stays stably on the corresponding disease-free states xe, ce. For non-zero disease states, using Ito

calculus we have to check the behavior for every t of the solution of

mt = lim
s→−∞

ms exp

(∫ t

s

α(xr)
g(mr)

mr
dr −

(
γ − σ2

2

)
(t− s) +

∫ t

s

σdWt

)
.

with the simultaneous integrated equations of (29), which remain autonomous and we omit. The solution

always exists as a measurable path, as shown before; the stochastic integral in this equation is an Itô integral

and is simply equal to W (t, ω)−W (s, ω) where W are realizations of standard Gaussian variables. Exploding

wealth trajectories are excluded by the transversality condition, g(.) has bounded derivative as shown above,

m cannot hit the zero boundary via (25) because of the lognormal nature of the fluctuations and therefore

the limit exists and is bounded. There therefore exists an unique pullback attracting global solution in

m > 0, and the pullback attractor exists as the solution of (31) together with the household control system,

only obtainable numerically. However, we can study the limits of the solution, which are given by

lim
m→0

∫ t

0

dmt = 0

lim
m→∞

∫ t

0

dmt = exp

(
−
∫ t

0

γsds

)[
m0 +

∫ t

0

exp

(∫ s

0

γrdr

)
α(xs)ds

]
.

Since m → ∞ (or more realistically when the disease intensity is much larger than the snail death rate β)

implies x→ 0, we can write the last equation asmt = e−
∫ t
0
γsds

(
m0 + αN

∫ t
0
e
∫ s
0
γrdrds

)
, where γt = γ−σWt.

This pullback limit can be obtained explicitly:

lim
s→−∞

e−
∫ t
s
γrdr

(
m0 + αN

∫ t

s

e
∫ r
s
γududr

)
=
αN

γt
.

This result points in the right direction but a last step is required: using Itô calculus14 we can obtain the

solution of the limiting SDE and then examine its backward limit, which is given by

lim
s→−∞

mt = lim
s→−∞

exp

(
−
∫ t

s

(
γ +

1

2
σ2

)
dr +

∫ t

s

σdWr

)
×(

ms +

∫ t

s

αN exp

(∫ r

s

(
γ +

1

2
σ2

)
dr −

∫ r

s

σdWr

)
ds

)
(32)

=
αN

γ + 1
2σ

2 − σdWt

.

14The proof is standard and left to Appendix F.
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We note that this result implies that in order for the non-autonomous change of variable in (31) to yield the

correct result, (25) has to be interpreted in the Stratonovich sense. The level αN/γ is easily seen to be the

endemic state of the deterministic disease equation with large m when household wealth limits to zero. The

random attractor for the limiting case is therefore the equivalent of the endemic deterministic one, subject

to fluctuations and the Itô correction of the drift. This means that for all m the solutions of (31) exist,

and for all t the random set E(ω) = [z∗df , ϕ(t, ω)z∗e] defines the pullback attractors for the stochastic system

(29). The zero-disease state is pullback-attracting and absorbing, since it is a non-random state unaffected

by fluctuations. The endemic state is pullback-attracting and has a stationary density measure given by

(28). If the state is at a disease-free state and is shocked to a nonzero level of disease, (27) shows that the

probability flow between the states responds to the wealth-dependent (and thus stochastic) R0 of the disease.

This is because it effectively controls the drift of (25), and pushes the state towards its attracting level.

A rigorous analysis of non-stationary dynamics, as well as the potential emergence of stochastic resonance

phenomena due to fluctuations, is a matter of great interest as well as a considerable challenge. Further

expansions in this direction would be the inclusion of heterogeneity in the households, thus allowing (25)

to have a drift dependent on the density of the wealth of different households, thus becoming a SDE of

the McKean-Vlasov type. Another extension would be to include explicitly the stochastic dynamics in the

optimization process and therefore have a mean-field game problem: we leave these potential developments

to future research.

6.3 The role of human mobility: spatially explicit equilibria

Let us now study the role of human mobility and the spatial distribution of poverty in the transmission of the

disease. To start, we focus on the human transmission of schistosomes by means of village interconnections

(roads). Each village i’s level of schistosome infection intensity is made dependent on the sum of the rest of

the disease intensities suffered by other villages, weighed by a connectivity factor comprised by the number

of people moving from and to each village and a mobility network, representing the distribution of the mass

of people transported between villages. The augmented model becomes therefore the 4n system of ODE

given by

ẋit = Fi(xit,mit)− δixit − cit

ṁit = α (P(xit))

(1− pi)Nisit + pi

n∑
j=1

QijNjsjt

− γmit (33)

ṡit = BHimit(1− sit)− βisit

ċit = − u
′
i

u′′i
(cit) [∂xiFi(xit,mit)− (δ + ρ)] .

Here we have on the production side a set of i production technologies Fi, each representing the structural

agricultural production of each village, as well as a set of i utility functions ui. an identical contact function

α(x), to represent the structural susceptibility of humans to schistosome infection, dependent on the wealth

of village i, a probability pi for the probability of a person to leave village i, and Q = Qij is a positive

human connectivity matrix which represents the mobility among the network between node (village) i and

node j. A reasonable choice for this matrix would be to set it to be exponentially decaying with distance
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between nodes, i.e. Qij ∝ exp(−dij). Used in transportation theory, this is essentially a constrained gravity-

like framework that can be used to describe human movement when actual mobility data are not available

[CITE]:

Qij = Ni
exp(−dij/D)∑n

k 6=iHk exp(−dik/D)
, (34)

where Ni is the population of each village, dij is the distance between nodes and D is the average travel

distance. The matrix is made of zeroes on the main diagonal and non-negative values on the rest of the

positions. The graph associated to the matrix Q represents the human mobility among the roads that

connects the villages, and weighs the human transmission of the infection from node j to node i by how much

people move between the two nodes. As before, we assume snail equilibrium (results are again qualitatively

unaffected) and homogeneous agents on a continuum, and reduce the system to a 3n-dimensional one given

by

ẋit = Fi(xit,mit)− δixit − cit

ṁit = α (xit)

(1− pi)gi(mit) + pi

n∑
j=1

Qijgj(mjt)

− γmit (35)

ċit = − u
′
i

u′′i
(cit)

[
∂xiFi(xit,mit)− (δi + ρi)

]
.

where gi(mit) = Ni
BHimit

BHimit+β
is the increase of schistosome infection due to local snail prevalence param-

eters. As before, we have two equilibria: in matrix notation, the disease-free state (x∗df , 0, c
∗
df ) (where

x = [x∗1, . . . , x
∗
n] and similarly for m and c) and the recursive endemic equilibrium (x∗e,m

∗
e, c
∗
e), where the

endemic level of disease in each village m∗i depends in turn on the other endemic states m∗j , and consequently

on the corresponding steady state levels of wealth x∗j . It’s immediately seen how in absence of mobility (i.e.

Qij is identically zero everywhere) the model collapses to its spatially implicit counterpart.

Let us now expose the role of human mobility and country-wide poverty in the transmission of the disease.

The Jacobian for the system given by (35) is a 3n× 3n matrix given by

J∗ =


∂xF(x,m)− δIn ∂mF(x,m) −In
α′(x)g′(m) α(x)g(m)(In − p− pQ)− γIn 0n

− u′

u′′ (c)∂xxF(x,m) − u′

u′′ (c)∂xmF(x,m) −
(
∂c

u′

u′′ (c)
)

[∂xF(x,m)− (δ + ρ)In]

 ,
(36)

dropping the time dependence for clarity purposes and where δ, ρ and γ are now n×1 column vectors made by

the specific village-representative parameters [δ1, . . . , δn]′, [ρ1, . . . , ρn]′ and [γ1, . . . , γn]. To clarify notation,

∂k is the vector-by-vector partial derivative operator that applies to the vector function F = [F1, . . . , Fn]

with respect to each input vector [x,m, c]. Furthermore, p is a n× n diagonal matrix with on each nonzero

element the probability of leaving each village, α′(x) is a n × n diagonal matrix with on each element the

derivative of the function α (assumed common across villages) estimated at the different levels of village

wealth, i.e. α′(x) = [α′(x1), . . . , α′(xn)]In, and g(m) is a n × n diagonal matrix with on each element the

different functions of schistosome evolution for each village, i.e. g(m) = [g1(m1), . . . , gn(mn)]In, and simi-
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larly for g′(m). Lastly, In is the identity matrix.

Let us now analyze the onset conditions for schistosome infection, as before, by studying the nature of

the disease-free equilibrium. The Jacobian reduces to

J∗df =

 ρIn ∂mF(x∗df , 0) −In
0n α(x∗df )g′(0)(In − p− pQ)− γIn 0n

− u′

u′′ (c
∗
df )∂xxF(x∗df , 0) − u′

u′′ (c
∗
df )∂xmF(x∗df , 0) 0n

 (37)

which allows to study its eigenvalues by means of standard properties of block matrices. They are given by

the column vector λ that solves

det

 (ρ− λ)In ∂mF(x∗df , 0) −In
0n α(x∗df )g′(0)(In − p− pQ)− (γ + λ)In 0n

− u′

u′′ (c
∗
df )∂xxF(x∗df , 0) − u′

u′′ (c
∗
df )∂xmF(x∗df , 0) −λIn

 = 0;

since (ρ − λ)In is clearly invertible, we see that the first set of n eigenvalues is given by λi = ρi > 0. The

rest of the eigenvalues are then given by the zeroes of

det

[ α(x∗df )g′(0)(In − p− pQ)− (γ + λ)In 0n

− u′

u′′ (c
∗
df )∂xmF(x∗df , 0) −λIn

]
−

[
0n

− u′

u′′ (c
∗
df )∂xxF(x∗df , 0)

]
(ρIn)−1

[
∂mF(x∗df , 0)

−In

]T ,

which after some manipulations can be rewritten as the zeroes of

det

[
α(x∗df )g′(0)(In − p− pQ)− (γ + λ)In 0n

− u′

u′′ (c
∗
df )
(
∂xxF(x∗df , 0)∂mF(x∗df , 0)(ρIn)−1 − ∂xmF(x∗df , 0)

)
−
∣∣∣− u′

u′′ (c
∗
df )∂xxF(x∗df , 0)(ρIn)−1

∣∣∣− λIn
]
.

(38)

This implies that the eigenvalues of (38) are the union of the eigenvalues of each diagonal block, yielding

the second set of n eigenvalues given by

λi = −
∣∣∣∣− u′iu′′ii (c∗df )

Fi,xixi(x
∗
i df , 0)

ρi

∣∣∣∣ ,
which are all negative, making the disease-free equilibrium saddle-path stable with, in absence of disease

dynamics, an asymptotic tendency towards itself if the discount factors are not too large15. The nature

of the disease-free equilibrium is therefore determined the nature of the disease dynamic system in partial

equilibrium around the disease-free state, whose Jacobian is the matrix J∗∗ = α(x∗df )g′(0)(In−p−pQ)−γIn.

Let us define a diagonal matrix as R0(x∗df ), representing the “local” disease reproduction rates which has for

elements each wealth-dependent R0 in absence of human mobility (or, equivalently, each village’s spatially

implicit R0):

15The dominant eigenvalue is negative, thus the asymptotic path of the controlled system will be on an eigenvector aimed
towards the disease-free equilibrium, if max ρ <

√
−u′i/u′′i Fi,xx, which is an equivalent condition to the spatially implicit case.

35



R0(x∗df ) =


α(x∗1,df )BN1H1

β1γ1
. . . 0

...
. . .

...

0 . . . α(x∗n,df )BNnHnβnγn

 =


R1

0(x∗1,df ) . . . 0
...

. . .
...

0 . . . R1
0(x∗n,df )

 .
Consider now the matrix Rtr

0 (x∗df ) that represents the transportation of the disease reproduction rate between

villages, in which each element Ri,j0 represents the disease reproductive potential generated by the infected

snails in a node j when transported to a node i, facing the corresponding potential for transmission to

humans α(x∗i,df ), dependent on the corresponding level of village wealth. This n× n matrix can be written

as

Rtr
0 (x∗df ) =


α(x∗1,df )BN1H1

β1γ1
. . . α(x∗1,df )BNnHnβnγn

...
. . .

...

α(x∗n,df )BN1H1

β1γ1
. . . α(x∗n,df )BNnHnβnγn

 =


R1,1

0 (x∗1,df ) . . . R1,n
0 (x∗1,df )

...
. . .

...

Rn,10 (x∗n,df ) . . . Rn,n0 (x∗n,df )

 .
We can then write the reduced Jacobian J∗∗ as

J∗∗ = (γIn)
[
(1− p) ·R0(x∗df ) + (p ·Q) ◦Rtr

0 (x∗df )− In
]
, (39)

where ◦ is the Hadamard product and noticing that by construction the diagonal of a connectivity matrix is

zero. This matrix has therefore diagonal elements representing each village’s deviation from the endemicity

threshold of unity and in the rest of the matrix the transported R0 between villages, weighed by the intensity

of the mobility flows. Intuitively, it represents how each village i is susceptible to infection either due to

its own characteristics (the single Ri0 components) or due to how infection would spread when brought

from another node j. This matrix represents the local linearization of the system in the partial disease-free

equilibrium. Poverty-driven disease reproduction rates are therefore transported throughout the system via

the connectivity between nodes. We first note that the diagonal is the key determinant of the nature of

the matrix: if all of its elements are positive, then the reduced Jacobian is non-negative. This implies that

each village has an “intrinsic” R0 greater than the endemicity threshold dependent on the corresponding

disease-free equilibrium level of wealth, each weighed by the probability of its population to remain in

the village (1 − pi). This intuitively corresponds to a situation in which the entire network (country) has

high (endemic) local reproduction rates. Then, by the Perron-Frobenius theorem for non-negative matrices,

the dominating eigenvalue λd of J∗∗ is real. Furthermore, the corresponding dominating eigenvector (i.e.

the asymptotic tendency of the system shocked away from the disease-free equilibrium) has only positive

components, implying that the perturbated disease-free “partial” system (i.e. linearized around the village

wealth kept at its disease-free equilibrium) will tend towards the endemic state. This means that the

structural characteristics of the disease dynamics in the network, ignoring the beneficial effects of reduced

poverty, are strong enough to make the disease-free equilibrium unfeasible. This key quantity is bounded

from below:

λd ≥ min
i
γ[(1− pi)Ri0(x∗i,df ) + (1− pi)

∑
j 6=i

QijR
i,j
0 (x∗i )] ≡ min

i
γ(EjQijRi,j0 − 1),

which is the minimum among all villages’ expected deviation from unity of the overall R0, weighed between
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the local rate and the transported rates from other nodes, and is clearly positive. If this bound exceeds the

maximum among the absolute value of the n negative elements of the spectrum of J∗ that do not depend on

human mobility, i.e.

max
i

∣∣∣∣− u′iu′′ii (c∗df )
Fi,xixi(x

∗
i df , 0)

ρi

∣∣∣∣ ≤ min
i
γ(EjQijRi,j0 − 1), (40)

then the full system (including the feedback effects of wealth on disease) will asymptotically escape the

disease-free equilibrium and move towards the Pareto-dominated endemic state. This implies that the

characteristics of the entire country’s production possibilities, and the consequent levels of wealth, cannot

compensate with their beneficial effects on disease evolution the country’s structural weakness to the disease

dynamics. The same key quantity is bounded from above: the upper bound for the overall dominant

eigenvalue of J∗ satisfies

λd ≤ max
i
γ(EjQijRi,j0 − 1),

which in turns yields the condition for the dominant eigenvalue of J∗df given by

max
i

∣∣∣∣− u′iu′′ii (c∗i,df )
Fi,xixi(x

∗
i,df , 0)

ρi

∣∣∣∣ ≥ max
i
γ(EjQijRi,j0 − 1), (41)

which, if satisfied, shows that the overall tendency of the complete perturbated network will be to return

to the disease-free equilibrium since the beneficial effects of wealth on disease dynamics, represented by the

production and consumption characteristics, outweigh the disease evolution structure within the network.

These two conditions imply that joint states of disease intensity and poverty of each village are continuously

transported by human mobility on the entire network of villages, and intervention has to be aimed consid-

ering how the network of transmission can simultaneously affect different nodes (villages). In more simple

terms, if a village i experiences a particularly dangerous potential for infection gi(mi), then intervention

has to be aimed not only in the village itself, but on all the villages j connected to village i towards which

this potential can propagate, and particularly those in a greater state of poverty that experience a contact

function α(x∗j,df ) that would allow for increased sensitivity of the population to infection. It is evident that

conditions (40) and (41) are for lower bounds for the dominant eigenvalue λd of J∗∗, and therefore are suffi-

cient but not necessary conditions for the characterization of the sign of the dominant eigenvalue of J∗df .

If at least one of the elements is negative, implying that at least one of the villages has a local weighed

R0 inferior to unity, then J∗∗ is a Metzler (quasi-positive) matrix. If the graph associated to the mobility

matrix Q is strongly connected, then the graph associated to J∗∗ is strongly connected. Then the matrix is

irreducible, and again by the Perron-Frobenius theorem the dominating eigenvalue λm is real. This allows

to study its range by means of Gershgorin’s circle theorem focused on the real axis, implying that λm lies in

an interval centered on its relative local (1− pi)Ri0(x∗i,df ) of size ±pi
∑
j 6=iQijR

ij
0 (x∗i,df ). Therefore, if

EjQijRi,j0 − 1 < 0, ∀j = 1, . . . , n

then the net tendency of the overall system will be to stay in the disease-free state. This is because the

expected weighed wealth-dependent R0 for each i have a local component (1− pi)Ri0(x∗1,df ) that is both less

than one (implying a local tendency for the disease to vanish) and larger than the infectious transported

components
∑
j 6=i piQijR

i,j
0 (x∗df ), and therefore the partial system will asymptotically tend towards the
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disease-free state. Since the rest of the system has also the same tendency, the overall disease-free equilibrium

is sustainable. Furthermore, each eigenvalue, corresponding to each of the n individual eigenvectors, will

be centered on each diagonal element Ri0(x∗i,df ) − 1 lies within a disk of radius equal to the sum of the

transported components. The dominating component will then define the overall asymptotic tendency of

the system on whether to escape the disease-free state towards the endemic recursive equilibrium.

6.4 The role of information: social optima

I now extend the model to one of social optima, where the household (or an external policymaker) wants to

know the optimal policies necessary once the disease dynamics are explicitly accounted for. We furthermore

include the effect of hired labor supply on the infection parameter α, now made dependent on aggregate

household (village) wealth xt and labor supply lt, in order to represent human-water contact related to

agricultural work, as well as being compatible with the evidence of disease contagion stemming from labor

migration. We model this mechanism with α(xt, lt), where αx < 0 and αl > 0, and the diagonal elements of

its Hessian are αxx ≥ 0 and αll ≤ 0. Intuitively, richer households as before experience a reduced possibility

of infection, while an increase in labor supply on the farm increases it. Note that in the previous framework

we could easily incorporate the same effect of labor supply on the human-schistosome contact function and

obtain identical dynamics, as long as the function remains decreasing in x. We include the schistosomiasis

dynamics in a model of household optimization, where consumption and labor supply need to be chosen

optimally. The problem can be formalized as follows:

max
c,l

∫ ∞
0

e−ρtu(ct)dt (42)

s.t. ẋt = F (xt, lt,mt)− δxt − ct − wlt
ṁt = α(xt, lt)g(mt)− γmt.

xt,mt ≥ 0 ∀t

[x0,m0] = [x0,m0] ∈ R+.

where all parameters are the same as in the previous framework. If labor is supplied both internally and

externally in an exogenous (i.e. non-optimized) proportion, one can simply substitute wlelt, where le is the

proportion of hired (external) labor.

Since αll ≤ 0, the Hamiltonian associated with this problem is concave in the controls and therefore

the resulting c∗t , l
∗
t are optimal. The co-state variables λt and µt, respectively associated to the wealth and

disease variables, can be obtained by a dynamic envelope approach, and are given by

λt =
∂

∂x

∫ ∞
t

e−ρsu(c∗s)ds (43)

µt =
∂

∂m

∫ ∞
t

e−ρsu(c∗s)ds (44)

where c∗t is the optimal path of consumption in feedback form, which is in turn function of the state variables.

With standard methods one can show that the complete controlled system that describes the model dynamics
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can be written as:

ẋt = F (xt, lt,mt)− δxt − ct − wlt (45)

ṁt = α(xt, lt)g(mt)− γmt (46)

ċt = − u
′

u′′

[
Fx −

αx
αl

(Fl − w)− (δ + ρ)

]
(47)

l̇t =
1

(Fl − w)αllαl − Fll

{
u′′

u′
(Fl − w) ċt +

[
Flm −

g′(mt)

g(mt)
(Fl − w)

]
ṁ +

+

[
Flx −

αlx
αl

(Fl − w)

]
ẋt +

∂ṁt

∂l
(Fl − Fm − w)− (γ + ρ)(Fl − w),

}
(48)

joined by the transversality conditions limt→∞ λtxt = 0, limt→∞ µtmt = 0. For the sake of clarity we omit

the arguments of F and α and their partial derivatives in (47) and (48). We first notice that a key quantity

in determining optimal labor and consumption dynamics is the deviation from the optimal separable level

of labor, (Fl − w). Evolution of optimal consumption, ceteris paribus, is unequivocally decreasing with an

increase in θ (the parameter calibrating the effect of schistosomiasis) if labor is underutilized with respect

to its separable level, i.e. Fl ≥ w. This happens since αx < 0, αl > 0 and the gradient of F is decreasing in

m. At the social optimum, therefore, we have a modified Keynes-Ramsey rule for consumption that includes

the feedback dynamics of labor choice and wealth via the gradient of α(x, l), modulated by the deviation

from a separable equilibrium. Equation (48) is more involved but has a straightforward interpretation:

the optimally controlled labor choice is dependent on the evolution of both state variables as well as opti-

mal consumption, and this co-movement is calibrated again by the deviation of labor from its separable level.

The schistosomiasis intensity as before has two equilibrium levels, a disease-free one where m∗df = 0

and an endemic level given by m∗e(xt, lt), now also explicitly function of hired labor. The endemic level

is an increasing function of labor and a decreasing function of wealth. We first notice that the disease-

free equilibrium m∗df = 0 implies ∂ṁ/∂l|m∗df=0 = 0 and an equilibrium level of wealth and labor such that

Fl = w. This means that in absence of schistosomiasis, the problem becomes separable between input

and consumption choices. This implies that the co-state variable µt related to the disease evolution is zero

everywhere, and from (43) one can see that the optimal consumption level and its relative utility path is

unaffected by the disease dynamics. Zero co-state implies that optimal labor is equivalent to the static

problem, in which at every instant the household utilizes labor equal to its (disease-free) static level where

the marginal productivity of labor is equal to the wage paid. At the disease-free equilibrium, therefore the

problem collapses to a standard saddle path-stable consumption choice. As we can see from (47) we obtain

the standard equilibrium derived from the Keynes-Ramsey rule for optimal consumption. The endemic

steady state for labor as a function of wealth solves

∂ṁt

∂lt
= (γ + ρ)

Fl(xt,m
∗
e(xt, lt), lt)− w

Fl(xt,m∗e(xt, lt), lt)− Fm(xt,m∗e(xt, lt), lt)− w
, (49)

which since Fm < 0 shows how the socially optimal choice of labor deviates from its separable level by

an amount proportional to the marginal decrease in agricultural production due to schistosomiasis. This

result implies that the Nash-consistent outcomes generated by households optimizing without considering

the externalities of production on the disease dynamics generate outcomes which are socially inefficient, and
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the deviation can be shown to be

∆l∗sep = −
(
|Fm(xt,m

∗
e, lt)|+ (γ + ρ)

µt
λt

)
. (50)

Since in the Nash outcomes the disease co-state µ is by construction zero, we have that for social optima the

optimal labor must include the externalities that labor itself has on the increased human-schistosome con-

tact function. Using (43) and (44), we see that the deviation from separability in the household problem is

proportional to the ratio of the marginal effects of wealth and disease on the future optimal consumption path.

An explicit analysis of the stability of the equilibria in the social optima case is difficult due to the

complexity of the dynamical system given by (45)-(48). What we can obtain, however, is that for the

disease-free equilibrium again the R0 is a key quantity in determining the stability of the equilibrium, since

it can be shown that the determinant of the Jacobian of the system linearized around the disease-free

equilibrium, where l∗ = F−1l (w), is given by

det J∗df = γ(R0(x∗df , l
∗
df )− 1)

[
− u
′

u′′

(
−Fll(γ + ρ)

(
Fxx −

αx
αl
Flx

)
+ γFxl

(
Fxl −

αx
αl
Fll

))]
z∗df

(51)

where z∗df = [x∗df , 0, c
∗
df , l
∗
df ] is the equilibrium in the presence of no disease, and therefore the social opti-

mum, and ∆R0 is as before the percentage deviation of the disease reproduction rate from the threshold of

unity. The exact nature of the (socially optimal) disease-free equilibrium requires eigenvalue analysis and

cannot be explicited in closed form, although from (51) one can see how the sign of the determinant changes

once the disease-free R0 passes the threshold of unity. One can also see how bifurcations can emerge from

parameter changes, since the argument of the determinant within square parentheses is a mixture of positive

and negative quantities: however, specific conclusions require more specific assumptions on functional forms,

although evidence with numerical simulations hints towards a greater instability of the system.

Bifurcations can therefore happen even at the disease-free equilibrium, something that was entirely ruled

out in the Nash-outcome case, and the optimal equilibrium can exhibit partly stable limit cycles (i.e. limit

cycles with both attracting and repelling manifolds), bifurcating from a standard saddle point. The endemic

equilibrium shows evidence of bifurcations reciprocal to the disease-free ones: if one equilibrium switches

from saddle to limit cycle, the other switches from limit cycle to saddle, and viceversa. It also shows evidence

of absolute poverty traps, where all four eigenvalues are negative: however, the key difference with the Nash-

outcome scenario is that whenever there exists an unstable manifold on the Pareto-dominated equilibrium,

the social planner (or the representative household optimizing in a socially optimal way) can always choose

labor and consumption accordingly in order to put the controlled state z on the unstable subspace and escape

the trap. It is not possible unfortunately to flesh out the precise conditions for bifurcations and changes

in the nature of the equilibria, due to the complexity of the system, but numerically it’s a simple task to

present some possible scenarios. For consistency we now assume the Cobb-Douglas production function

given by (12) (total factor productivity A = 1, elasticities of wealth and labor equal respectively to 0.5

and 0.2, and θ = 0.1 consistently with our empirical findings), logarithmic utility and contact function

α(xt, lt) = α(1 + lt)/(1 + xt)
s, where α = 1, s = 0.5. We further assume B = 0.1, H = 0.1, N = 1, β =

1, γ = 0.2, so that the “natural” R0 of the disease (i.e. in absence of feedback effects) is above unity. The
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Figure 11: (Left panel) Bifurcation of the disease-free equilibrium due to an increase in wage, represented
by the dashed black line. As the wage increases, semi-stable limit cycles vanish and the equilibrium becomes
saddle-path stable. The dashed red line shows the level of wage that shifts the R0 of the endemic equilibrium
below the unity threshold, which is also where the dominant eigenvalue stops being a positive one. (Right
panel) Emergence of an endemic state as a poverty trap, as the infection parameter α exceeds the threshold
value indicated by the dashed black line. The imaginary part of the eigenvalues in this case is always zero
and is therefore omitted from the figure.

left panel of Figure 11 shows how as the exogenous wage increases, limit cycles around the socially optimal

equilibrium disappear, and the fixed point becomes a standard saddle-path stable equilibrium which can

now be reached with certainty. We notice that at the point on which the R0 of the equilibrium changes

sign, the dominant eigenvalue shifts from being positive to negative, implying that the net tendency of the

system is to escape the disease-free state. In the socially optimal case, however, if the initial conditions do

not force the farming household on the basin of attraction of the endemic equilibrium, the disease-free state

can always be achieved by avoiding the unstable manifolds, adjusting consumption or labor (or both). In

the right panel of Figure 11 we show the emergence of a poverty trap because of an infection parameter in

the contact function α exceeding a certain threshold value, from where even a fully aware farming household

cannot escape if the initial conditions are within its basin of attraction. One can notice that the dominant

eigenvalue is always negative, therefore exhibiting a net tendency of the state to be attracted to the endemic

equilibrium, but the existence of an unstable (i.e. escaping) manifold for an infection parameter not too

large allows the household to choose either labor or consumption to escape. Once α passes the threshold

indicated by the dashed black line in the figure, the trap is fully attracting. One also can notice that as the

infection parameter increases, the more the Pareto-dominated state is asymptotically stable, as the dominant

eigenvalue is negative and increases in absolute value. Needless to say, this analysis is entirely dependent on

functional choices and therefore not as general as in the Nash-outcomes case, although it seems to be robust

to alternative specifications.

7 Conclusions

In this paper I have studied the impact of schistosomiasis on agricultural yields in Burkina Faso by character-

izing it as a productivity shock, and by creating a theoretical framework that is consistent with the empirical

findings and allows to frame them in a wider perspective. By merging rich plot and household datasets

with high-resolution disease maps, I have shown how schistosomiasis has a large, negative and nonlinear

effect on agricultural productivity. Schistosomiasis therefore imposes a substantial burden on agricultural
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production, generating losses which range from an average of 6.6% to 32% for households and villages located

in areas with the highest infection clusters. This burden is paradoxically reinforced both by poverty and

by poverty-reducing measures such as water resources development. This mechanism is compatible with

a poverty trap, and is explained by my theoretical findings where poorer households experience a higher

disease reproduction rate (the R0), leading to greater negative productivity shocks and increasingly lower

levels of wealth and consumption. In the presence of environmental fluctuations, the endemic state becomes

a global attractor of the resulting random dynamical system. In a scenario where farming households are

not aware of the joint dynamics of agricultural production and schistosomiasis, we observe persistent states

of poverty that in some cases could be avoided if complete information was available.

Given that grain output represents roughly 12% of Burkina Faso’s gross domestic product, the preferred

mean estimate implies that schistosomiasis is associated with economic losses which correspond to around

0.8% of GDP. From a policy perspective, perhaps the most interesting result is that while dams and reservoirs,

ceteris paribus, increase agricultural yields, they can also induce substantial negative feedback effects by

spreading the disease. I show that this feedback is generated entirely by large-scale dams, which account for

a significant portion of development finance. My work highlights how the study of the interactions between

disease diffusion and economic development can benefit from the use of high-resolution data, which allows

one to control for the numerous confounding factors that data at higher levels of aggregation necessarily

miss. While the empirical focus of this paper has been on Burkina Faso, in part because it is likely to be

a worst-case scenario due to the country’s joint economic and epidemiological profile, this approach can be

applied to any country in which schistosomiasis is endemic and, indeed, to the economic impact of many

other diseases.

References

Acemoglu, D., V. Chernozhukov, I. Werning, and M. D. Whinston (2020). Optimal targeted lockdowns in a

multi-group sir model. NBER Working Paper 27102.

Acemoglu, D. and S. Johnson (2007). Disease and development: The effect of life expectancy on economic

growth. Journal of Political Economy 115 (6), 925–985.

Anderson, R. and G. Medley (1985). Community control of helminth infections of man by mass and selective

chemotherapy. Parasitology 90 (4), 629–660.

Antoci, A., M. Galeotti, and P. Russu (2011). Poverty trap and global indeterminacy in a growth model

with open-access natural resources. Journal of Economic Theory 146 (2), 569–591.

Audibert, M. (1986). Agricultural non-wage production and health status: A case study in a tropical

environment. Journal of Development Economics 24 (2), 275–291.

Audibert, M. (2010). Endemic diseases and agricultural productivity: Challenges and policy. Journal of

African Economies 19 (3), 110–165.

Audibert, M. and J.-F. Etard (1998, 07). Impact of Schistosomiasis on Rice Output and Farm Inputs in

Mali. Journal of African Economies 7 (2), 185–207.

42



Azariadis, C. and A. Drazen (1990). Threshold externalities in economic development. The Quarterly Journal

Of economics 105 (2), 501–526.

Azariadis, C. and J. Stachurski (2005). Poverty traps. Handbook of Economic Growth 1, 295–384.

Baldwin, R. E. and B. A. Weisbrod (1974). Disease and labor productivity. Economic Development and

Cultural Change 22 (3), 414–435.

Battle, K. E., T. C. Lucas, M. Nguyen, R. E. Howes, A. K. Nandi, K. A. Twohig, D. A. Pfeffer, E. Cameron,

P. C. Rao, D. Casey, et al. (2019). Mapping the global endemicity and clinical burden of plasmodium

vivax, 2000–17: a spatial and temporal modelling study. The Lancet 394 (10195), 332–343.

Behrman, J. R. and M. R. Rosenzweig (2004). Returns to birthweight. Review of Economics and statis-

tics 86 (2), 586–601.

Belloni, A. and V. Chernozhukov (2013, 05). Least squares after model selection in high-dimensional sparse

models. Bernoulli 19 (2), 521–547.

Belloni, A., V. Chernozhukov, I. Fernández-Val, and C. Hansen (2017). Program evaluation and causal

inference with high-dimensional data. Econometrica 85 (1), 233–298.

Bleakley, H. (2007). Disease and development: evidence from hookworm eradication in the american south.

The Quarterly Journal of Economics 122 (1), 73–117.

Bleakley, H. (2010). Health, human capital, and development. Annual Review of Economics 2 (1), 283–310.

Bleakley, H. and F. Lange (2009). Chronic disease burden and the interaction of education, fertility, and

growth. The Review of Economics and Statistics 91 (1), 52–65.

Bloom, D. E., D. Canning, and J. Sevilla (2004). The effect of health on economic growth: A production

function approach. World Development 32 (1), 1 – 13.
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Appendix

A Data

A.1 Agricultural and Household data

The agricultural and household surveys we use has been obtained from the Direction Générale des Previsions

et de Statistiques Agricoles at the Institut National de la Statistique et la Démographie in Ouagadougou

(Burkina Faso), ranging 2003 to 2017. Overall the dataset contains 19,993 unique households located in

1,950 villages (see Fig.(1a) in the paper), cultivating 202,162 unique plots over the years. Each household

on average cultivates around 10 plots throughout the years. Each plot can have up to two different crops,

among 31 possible ones. The most common food crops are millet, corn, rice, sorghum and peanuts, and the

only cash crop is cotton (traditional, bio, GMO). Figure 12 shows the counts of crop choices per yield in the

2009-2011 dataset. Most crops are food crops, and cash crops are almost entirely chosen as primary crop.

As shown in Figure 5, the distribution of plot yield is identical after partialling out household fixed effects,

implying heterogeneity is substantially generated at a plot level. Figure 13 shows how the villages cover

substantially the area of Burkina Faso, and allow us to exploit a large variation in terms of both disease

prevalence and geographical heterogeneity. Tables 1 and 2 show which households and villages are repeated

across the 2010 cutoff, and are roughly equivalent in the years between 2009 and 2013. For the estimations

of the paper we choose 2009 and 2011 for robustness, number of observed plots and model fit, although all

results hold for other year combinations. Figure 13 presents the maps of the villages for the five relevant

years around the 2010 cutoff (2009 to 2013) and their aggregated average yield.

46



0

3000

6000

9000

M
IL

M
A

ÏS
R

IZ
F

O
N

IO
S

O
R

G
H

O
 B

LA
N

C
S

O
R

G
H

O
 R

O
U

G
E

C
O

TO
N

A
R

A
C

H
ID

E
S

E
S

A
M

E
S

O
JA

IG
N

A
M

E
PA

TA
T

E
TA

R
O

P
O

M
M

E
 D

E
 T

E
R

R
E

FA
B

IR
A

M
A

M
A

N
IO

C
N

IE
B

E
V

O
A

N
D

Z
O

U
S

O
U

C
H

E
T

TO
M

AT
E

A
U

B
E

R
G

IN
E

 L
O

C
A

LE
A

U
B

E
R

G
IN

E
 IM

P
O

R
T

E
P

IM
E

N
T

H
A

R
IC

O
T

 V
E

R
T

F
R

A
IS

E
C

O
N

C
O

M
B

R
E

P
O

IV
R

O
N

G
O

M
B

O
C

O
U

R
G

E
T

T
E

PA
S

T
E

Q
U

E
/M

E
LO

N
A

U
T

R
E

S

0

5000

10000

M
IL

M
A

ÏS

R
IZ

F
O

N
IO

S
O

R
G

H
O

 B
LA

N
C

S
O

R
G

H
O

 R
O

U
G

E
C

O
TO

N
A

R
A

C
H

ID
E

S
E

S
A

M
E

S
O

JA
IG

N
A

M
E

PA
TA

T
E

TA
R

O
P

O
M

M
E

 D
E

 T
E

R
R

E
FA

B
IR

A
M

A
M

A
N

IO
C

N
IE

B
E

V
O

A
N

D
Z

O
U

S
O

U
C

H
E

T
TO

M
AT

E
A

U
B

E
R

G
IN

E
 L

O
C

A
LE

A
U

B
E

R
G

IN
E

 IM
P

O
R

T
E

P
IM

E
N

T
H

A
R

IC
O

T
 V

E
R

T
F

R
A

IS
E

A
IL

G
O

M
B

O
PA

S
T

E
Q

U
E

/M
E

LO
N

Figure 12: Crop choices for plot cultivations (above: main crop, lower: second crop, 2009 and 2011).

Table 1: Repeated households

2011 2012 2013 2014 2015 2016 2017

2003 4 4 4 2 2 2 2
2005 5 6 6 3 3 3 3
2006 5 6 6 2 2 2 2
2007 5 6 6 3 3 3 3
2008 119 120 128 19 18 18 19
2009 3, 040 2, 994 3, 185 10 10 10 11
2010 3, 049 3, 066 3, 208 18 19 18 17

Table 2: Repeated villages

2011 2012 2013 2014 2015 2016 2017

2003 18 18 19 16 16 16 16
2005 25 25 26 23 23 23 23
2006 25 25 26 21 21 21 21
2007 26 26 27 23 23 23 23
2008 651 648 697 235 233 235 236
2009 617 616 657 133 131 133 134
2010 588 586 618 125 124 125 126
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Figure 13: Geolocalized villages and relative average agricultural yield for the years 2009 to 2013 (from top
left, in order )

48



Table 3: Details on remote sensing climatic and environmental covariates

Website Source Covariates

Daily rainfall CHIRPS-V2 Funk et al. (2015) Yearly rainfall
Dry-period rainfall
Wet-period rainfall
Mean length of dry spells
Max length of dry spells

Monthly mean MODIS MOD11A1 Wan et al. (2015) Mean yearly surface temperature (day)
surface temperature Mean yearly surface temperature (night)

Monthly mean Perez-Saez et al. (2019) Mean yearly air temperature
air temperature Mean yearly night temperature

Mean dry-period day temperature
Days with temperature above seasonal median
Days with temperature below seasonal median

Vegetation indices MODIS MOD13A2 Didan (2015) Mean yearly Normalized Vegetation Index (NDVI)
Mean yearly Enhanced Vegetation Index (EVI)

Malaria Malaria Atlas Battle et al. (2019) Prevalence of Plasmodium Falciparum (2003-2017)

A.2 Climatic, environmental and malaria covariates

Table 3 gives details on the data sources used in our analysis, and yearly means of the climate covariates are

shown in Figure 14.

B Schistosomiasis and agriculture

B.1 Transforming schistosomiasis prevalence into infection intensity

The input to our analysis consists of modelled estimates of schistosomiasis prevalence, obtained via Bayesian

geostatistical methods, over a pixel grid at 5×5 km. The first map is obtained directly from Lai et al.

(2015), and the second is estimated in the same way. However, disease burden is more directly related

to infection intensity (worms per person), rather than prevalence. We therefore proceed to transforming

modelled prevalence into infection intensity using common assumptions about the distribution of worm

burden in the human population.

The data consists of prevalence and mean intensity of infection from parasitological surveys in Burkina

Faso coming from the Schistosomiasis control program of the Ministry of Health, of which part of the data

is published in Ouedraogo et al. (2016). All samples correspond to school-aged children. We here make the

assumption that the number of Schistosoma eggs per sample in the population follows a negative binomial

distribution Anderson and Medley (1985), Brooker et al. (2004). We have that the prevalence is given

by: p = 1 − P (X = 0) = 1 −
(
1 + µ

k

)−k
. Parasitological data across endemic countries suggest that the

aggregation parameter k is not constant across transmission settings, but rather varies as a function of

the mean intensity of infection µ in the population (mean eggs/person) Brooker et al. (2004). Following

other studies, we test for either a constant, linear (k(µ) = a + bµ) or a quadratic (k(µ) = a + bµ + cµ2)

relation. Inference on k(µ) is drawn through maximum likelihood estimation. For a given parameters set θ,

the likelihood of the parameters the parasitological data is given by a binomial distribution on the number
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Figure 14: Climatic and environmental covariates used in the analysis. (a) Mean yearly precipitation, (b)
mean dry-period precipitation (January to May), (c) Mean wet period precipitation (June to October), (d)
Mean length of dry spells during the wet period. (e) Mean of maximum length of dry spells during the wet
period, (f) Mean dry-period air temperature, (g) Mean day temperature, (h) Mean night temperature, (i)
Mean Enhanced Vegetation Index (EVI). All figures show the yearly mean for the 2004-2018 period, while
yearly rasters are included as covariates.
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of infected people ninfected,i among the sampled population nsampled,i in each village i among m sampled

villages:

L(θ,D) = P (D|θ) =

N∏
i

p
ninfected,i
i (1− pi)nsampled,i−ninfected,i ,

where pi is the prevalence of schistosomiasis in village i. The negative log-likelihood is then minimized using

standard optimization algorithms. We select for the best model using Akaike Information Criterion (AIC)

AIC = −2 log(L) + 2m, where m is the number of parameters in the model. We find the that there is a

strong support for a non-constant functional form (Table 4). The best-fitting quadratic parameter is not

statistically significant, so the linear form is retained.

Figure 15: Functional forms of the variation of parasite aggregation with mean infection intensity in Burkina
Faso. The best fitting relationship is a linear function of mean egg-intensity (Table 4).

Table 4: Model selection results for the functional form of the aggregation parameter for the inversion of
schistosomiasis prevalence into infection intensity.

k(µ) log(L) AIC parameters

a b c

constant -6682.02 13366 0.047 - -
linear -6020.48 12043 0.016 0.0012 -

quadratic -6020.48 12043 0.016 0.0012 1e-12

B.2 Schistosomiasis and optimal input allocation

We now present a simple model of optimal household input allocation with a distortion to labor input due

to schistosomiasis. We posit the disease to be a shock to effective labor supply E, of the form

E = (φ−θ̃L),

with θ > 0, and that the total agricultural output of the household is generated by

Y = A(φ−θ̃L)αF (X,K),

where A is total factor productivity, α < 1 and F (.) is the remainder of the production technology, dependent

on k inputsX chosen by the household (pesticides, livestock use) and inputs K which affect production but
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cannot be chosen (climate, land type). A household aims to maximize its instantaneous agricultural profits

by choosing optimallyL and X, and is given by

arg max
L,X

Π = pyA(φ−θ̃L)αF (X,K)− wL−
k∑
i=1

piXi (52)

where pi are the input prices, w is the labor wage, and py is the price of output. The k+1 optimal allocations

are then obtained by solving the system of k + 1 first-order conditions:

L∗(A, φ−θ̃,K,w, p), X∗i (A, φ−θ̃,K,w, p)→

L
∗ =

(
αpyAF (X∗,K)

wφαθ̃

) 1
1−α

X∗i = F−1
(
piφ

αθ̃

AL∗

)
where p = (py, p1, . . . , pk) is the vector of prices. Assuming an interior maximum, depending on the properties

of F (.), the log-linearized optimal production is therefore given by

y∗ = Ã− θφ+ αL∗(A, φ−θ̃,K,w, p) + F̃ (X∗i (A, φ−θ̃,K,w, p),K),

which recovers the quasilinear structure of the equation (2) of the paper. If F is assumed Cobb-Douglas,

then the model becomes fully linear.

The total marginal effect of schistosomasis on log-linearized optimal production, therefore, is given by

dy∗

dφ
= −θ + α

dL∗

dφ
+

k∑
i=1

∂F (X∗,K)

∂X∗i

dX∗i
dφ

,

where θ = αθ̃, and the specification becomes identical to Eq. (1) (i.e. schistosomiasis is a pure productivity

shock) if dL∗

dφ and all the
dX∗i
dφ are zero. Note that this model can straightforwardly be extended to a more

general form F (L,X,K), but we choose this specification to better illustrate the choice of estimating Eq.

(1) and choosing both log-linear and adaptive forms for F .

The condition of zero derivatives is what we observe in the data: a first set of reduced-form evidence

comes from studying the interactions of schistosomiasis on all input variables. We obtain a clear sign of zero

signal: Table 6 reports the coefficients of the interactions, and omits both the rest of the controls as well as

the interaction of schistosomiasis intensity on non-chosen inputs (climate, land type). Table 5 shows how for

all of the choice input variables the marginal impact of schistosomiasis is not significant, hence validating our

initial assumption of identifying schistosomiasis as a productivity shock in estimating Eq.(1). The results

are robust to more flexible specifications (interactions, adaptive methods), as well as by instrumenting the

intensity with the snail densities. All other controls used for each line of5 are omitted. Unlike schistosomiasis,

malaria does not seem to have a significant effect in this specification as a productivity shock, which we find

to be a believable finding: malaria, by the nature of its health effects and burdens, is more consistent with

a temporary shock to direct labor supply. This identification would have to be tested with a completely

different strategy, which we leave to future research.
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Table 5: Input use and schistosomiasis intensity

y Intensity (Clustered s.e.)

log plot surface 0.0003 (0.0002)
presence of hired labor 0.0003(0.0004)
presence of motorized labor 0.0008(0.0008)
presence of manual labor 0.0002(0.001)
presence of horse-driven labor -0.001 (0.0007)
presence of labor from mutual aid -0.002(0.001)
total agricultural livestock 0.0001(0.001)
total livestock 0.0001(0.0008)
cows -0.0011(0.0021)
horses -0.0024(0.0039)
pigs -0.0014(0.0028)
goats 0.001(0.0021)
self-consumption 0.0018(0.0014)
cows sold 0.0002(0.0015)
cows bought -0.0042(0.0028)
pigs sold 0.0004(0.002)
pigs bought 0.0008(7e-04)
goats sold 0.0002(5e-04)
goats bought -0.0001(0.0012)
gifts 0.0001(0.001)
thefts 0.0011(0.001)
type of plot farming -3e-04(0.0012)
npk (kg) 0.0023(0.0016)
urea (kg) -0.0025(0.0015)
phosphates (kg) 0.0006(0.0006)
solid pesticides (kg) 0.0015 (0.001)
liquid pesticides (cl) 0.0014(0.0012)
herbicides (g) 0.0025(0.0036)
herbicides (cl) -0.0014(0.0032)
fungicides (g) -0.0017(0.0023)
fungicides (cl) 0.0008(0.0006)
rodenticides (g) 0.0036(0.0025)
rodenticides (cl) 0(0.0013)
number of household members -0.011(0.0042)
number of families in the household 0.0006(0.0007)
number of young members working 0.0045(0.0026)
number of women working 0.0052 (0.0029)
rainfed agriculture 0.0001(0.0001)

Observations 51,055

Time, crop and household f.e., village clustering ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: No signal on schistosomiasis interactions for choice inputs

y: Log Yield

intensity×log surface −0.001 (0.003)
intensity×presence of hired labor −0.005 (0.003)
intensity×presence of motorized labor 0.008(0.008)
intensity:×presence of manual labor −0.012(0.011)
intensity×presence of labor from mutual aid 0.002 (0.003)
intensity×total agricultural livestock 0.001(0.001)
intensity×total livestock 0.00000(0.00004)
intensity×cows 0.0003 (0.0003)
intensity×horses 0.007(0.004)
intensity×pigs −0.0001(0.0004)
intensity×goats 0.0001(0.0003)
intensity×self-consumptions 0.0001(0.0003)
intensity×cows sold −0.001 (0.001)
intensity×cows bought −0.001(0.001)
intensity×pigs sold −0.00001(0.001)
intensity×pigs bought 0.001 (0.001)
intensity×goats sold −0.0001(0.001)
intensity×goats bought 0.00005 (0.001)
intensity×gifts −0.001(0.0005)
intensity×thefts 0.0001(0.0001)
intensity×type of plot farming 0.003 (0.002)
intensity×npk (kg) 0.00000(0.00003)
intensity×urea (kg) −0.0001(0.0001)
intensity×phosphates (kg) −0.0001(0.0002)
intensity×solid pesticides (kg) −0.00001(0.00001)
intensity×liquid pesticides (cl) 0.00000(0.00000)
intensity×herbicide (g) 0.00000 (0.00000)
intensity×herbicide (cl) 0.00001 (0.00001)
intensity×fungicide (g) −0.00004(0.00005)
intensity×fungicide (cl) −0.00001 (0.00001)
intensity×rodenticide (g) 0.00000(0.00001)
intensity×rodenticide (cl) 0.00002(0.00002)
intensity×number of household members 0.0001(0.001)
intensity×average age −0.0001 (0.0002)
intensity×number of families in the household −0.0001(0.006)
intensity×number of children 0.001(0.001)
intensity×number of young working −0.0003 (0.001)
intensity×number of women working −0.0003(0.001)

Observations 51,055
R2 0.336
Adjusted R2 0.290
Residual Std. Error 1.209 (df = 48072)

Time, crop and household f.e., village clustering ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.3 Full results and robustness checks

We present here the full set of results and robustness checks for the estimation of the overall impact of

schistosomiasis on agricultural yield. As stated in the main paper, we specify the production

Yihjt = Ahj(1 + φhjt)
θF (Xihjt)eihjt,

where Yihjt is the yield (output per hectare) of plot i, farmed by household h in village j at time t, φhjt,

which is common to all plots cultivated by a given household, represents the direct effect of schistosomiasis on

productivity, calibrated by a parameter θ. The term (1+φ) is proxied with the measure of infection intensity

in terms of mean egg-output per person discussed in B.1, denoted by Ijt = (1 + Intjt). Taking logarithms

then results in the quasilinear model (2), where our goal is to identify the parameter θ. In all estimations,

for the variables that include zeroes (particularly plot surface and yield) we use the inverse hyperbolic sine

transformation instead of the natural logarithm. We begin by imposing a Cobb-Douglas functional form

on F (.), which yields a fully linear model. Details on the machine learning architecture are the following:

in general we use a 5-fold cross-validation for every method, and the best method is chosen by means of a

mean squared error criterion, in the non-IV case is gradient boosting machines and for the IV case random

forests. For random forests, we use 1000 trees, each with a minimum terminal node size of 5. Tuning is

done by randomly sampling input variables for each split, with a step factor of 1.5 with improvement of

0.05, starting from the square root of the number of sampled columns. Gradient boosting machines are

fit using a Gaussian distribution since in all cases both y and I are continuous, with 1000 trees each with

a shrinkage parameter of 0.1, a within-fold cross-validation of 3 folds and 20% of the observations in the

training set chosen to fit each subsequent tree. Neural networks work less well than the other two methods,

although the estimates are not statistically different, but result in a greater MSE. They are fitted with 5

units per hidden layer with maximum allowable weights of 5000 with 1% decay and 1000 maximum iterations.

Aggregating at the village level, the quasilinear model for a representative household is of the form:

yjt = Ãj − θIjt + F̃ (Xjt) + αt + εjt. (53)

All village-level regressions are obtained assuming a Cobb-Douglas specification for F (.), since village aggre-

gation yields reduced-form estimates. The model is then estimated with standard panel IV techniques in the

same manner as was the case at the plot-level. When controlling for spatial effects and spatial correlation,

the model we fit after stacking observations and imposing a Cobb-Douglas functional form is the mixed

spatial autoregressive model (SAR) given by:

yjt = (12j − ρWj)
−1[Ijtθ + X̃jtβ + αt + εjt], (54)

where Wj is the matrix of spatial weights given by the distance between the j villages, ρ is the spatial

autoregressive parameter, and X̃jt is the matrix of factor inputs expressed in logarithmic form. We fit

a model where both dependent and independent variables are spatially lagged. In order to check for the

presence of spatial random effects, we fit a model with a random term u(d) with mean zero and spatial
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Figure 16: Estimates of the loss in yield due to schistosomiasis for 2009 and 2011 (95% confidence interval).
Each label reports average and top 5% percentile losses. All estimations include the full set of controls and
time fixed effects, and plot-level estimations also include crop fixed effects. Errors are clustered at village
level (commune level for commune fe), and cluster-bootstrapped for 2SLS.

covariance function Mν(d). We adopt the standard choice of a Matérn covariance function, given by

Cν(d) = σ2 21−ν

Γ(ν)

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
.

where d is between-village distance, ν and ρ are positive parameters, Kv is the modified Bessel function of the

second kind and Γ is the Gamma function. All parameters are then fit by maximum likelihood, allowing us

to estimate the spatial correlation between village pairs, and to obtain its rate of decay as distance increases.

We present results for households and villages observed in 2009 and 2011. These years are chosen to

maximize the number of observations and provide the best fit and accompanying model diagnostics. Results

are broadly similar for other combinations of years for which there are enough repeated observations.

Figure 16 reports the different estimates of θ. Given that the intensity measure is expressed in terms of

worm eggs per person, and that its value is in the 0-110 range, the coefficient associated with intensity is

expected to be negative and of the order of 10−2-10−3. The point estimate represents the marginal impact

of one additional worm egg per person on log yield.

The upper three estimates in Figure 16 impose a Cobb-Douglas functional form, yielding a fully linear

model; the first includes year and crop fixed effects, the second adds household ones. The point estimates

imply a loss in mean yield of between around 1% and 4%, with villages in the top 5% quantile of disease in-

tensity losing between 5% and 20%; however, the coefficients are not statistically significant at usual levels of

confidence. While time- and crop-invariant unobservables are controlled for, endogeneity and measurement

error remain a concern. Since our measure of disease prevalence/intensity is model-based, the associated

prediction error is included as a covariate, thereby hopefully reducing measurement error associated with

the key RHS variable. However, since our intensity measure is constant at the village level, and because
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individual households may display heterogeneous levels of infection within a same village, measurement er-

ror in all likelihood remains. As such, we then proceed to instrument disease intensity with the density of

the freshwater snails that serve as intermediate hosts of schistosomes, using densities of both snail species

Biomphalaria and Bulinus in different seasons (dry, rainy and winter) in order to instrument both forms

of the disease as described in the paper. The third entry in Figure 16 shows how instrumenting intensity

results in the point estimate of mean yield loss rising to 8.48% (40.99% in the top 5% intensity quantile).

Estimation done via a control function approach yields identical estimates and also allows to test whether

schistosomiasis intensity is actually endogenous, and this hypothesis is not rejected. It is then of interest

to inquire what could the source of this endogeneity be, whether from the likely presence of measurement

error or from a wider set of causes including omitted variable bias. We can get a clearer idea of the cause

by using heteroscedasticity as an internal instrument for the mismeasured value of schistosomiasis intensity

in the log-linear (Cobb-Douglas) model, a two-step GMM procedure first presented by Lewbel (2012). The

necessary heteroscedastic covariance restriction arises both by means of the nested structure of the data and

by natural occurrence. The results are almost identical to the 2SLS estimates, as shown in the fourth line

of Figure 16, and thus offers a possible explanation on the sources of the endogeneity bias in the standard

panel regressions. Reliance on internal instruments, however, whilst controlling for coefficient biases, does

not necessarily warrant causality in the effect, and therefore we rely on the instrumented specifications (log-

linear and machine learning) as the main results of the paper.

Once we relax the functional form assumption on the production technology and adopt DML techniques,

point estimates of the marginal effect of schistosomiasis intensity fall slightly, but precision improves. Indeed,

as is apparent in Figure 16, all DML 95% confidence intervals are entirely contained within the confidence

interval of the corresponding quasi-linear model, once household fixed effects are accounted for. For our 2009-

2011 sample, our preferred non-instrumented model is given by gradient boosting machines, and results

in a mean yield loss of 6.22% (30.05% in the top 5% intensity quantile). All three adaptive methods

(random forests, gradient boosting machines and deep neural networks) perform similarly, and differences

in MSE between the three are marginal. The IV DML estimates, which are computationally expensive

in that they require at least 2-fold cross validation, yield slightly larger marginal effects, which are again

estimated quite precisely. The instrumented DML estimate implies a mean loss of yield of 6.63% (32.04%

in the top 5% intensity quantile). Figure 17 shows the robustness of the results to using directly the

measure of schistosomiasis prevalence instead of intensity: the standard panel regression remain statistically

insignificant, and the instrumented ones are not statistically different from the intensity ones but higher in

terms of estimated percentage loss of yield (9.5% instead of 6.48%). The estimates reported in the main

paper are therefore on the conservative side: the reasons behind this slight variation could lie in the direct

dependence of the prevalence measure from the climate controls used in the geostatistical model estimation.

As expected, village-level estimates are more precise: within-cluster correlation is dampened and mea-

surement error is reduced. Estimation of the linear model with commune fixed effects yields a loss in yield

of 5.38% (25.57% in the top 5% intensity quantile), while the IV results yield a loss of 9.94% (47.26% in

the top 5% intensity quantile). Aggregating at the village level also allows us to study the impact of spatial

correlation, with the key issue being whether controlling for higher (commune) level unobservables is suf-

ficient to control for spatial correlation. We begin by estimating Moran’s I for the models with only time

fixed effects as opposed to time and commune fixed effects: spatial correlation falls from 0.13 - low, but

statistically significant at all conventional levels of confidence (p = 2e−5) to a statistically insignificant -0.07
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Figure 17: Estimates of the impact of schistosomiasis prevalence

(p = 0.970). Commune level unobservables therefore seem to lie at the root of any spatial correlation present

in the data. Fitting a spatial lag model with a weight matrix obtained from distances between villages

yields a similar point estimate of 4.48%.16 The map in the right-hand panel of Figure 5 provides a graphical

illustration of the weight matrix. We then check for the presence of spatial random effects. Point estimates

are slightly lower, with an average yield loss of 4%, but the null that this is equal to previous estimates

cannot be rejected. We then construct a measure of spatial correlation from the parameters obtained from

the spatial estimations. The right-hand panel of Figure 5 shows that spatial correlation decays rapidly: it

vanishes almost completely at a distance of 1 degree (110 km at the equator), and by 0.33 degrees (ca. 37

km) it already falls below 0.1. This confirms the previous result that commune-level fixed effects already

remove most spatial dependence in the data. For all instrumented estimations we use both a Hausman-Wu

test and a control function approach. Table 7 shows the relevance of the instruments (the first stage), while

Table 8 reports the significance of the residuals of the first stage in the structural equation, which implies

rejection of the hypothesis of exogeneity.

Table 7: First Stage

Dependent variable: Schistosomiasis Intensity

intensity

Biomphalaria, rainy season 2.063∗∗∗

(0.205)

Biomphalaria, dry season 0.970∗∗

(0.423)

Bulinus 0.204∗∗∗

(0.077)

Observations 51,055
R2 0.422
Adjusted R2 0.420
Residual Std. Error 9.439 (df = 50894)

Note: Other covariates omitted. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at village level

16The choice of queen or rook-type adjacency weights does not significantly affect the estimates.
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Table 8: Rejection of exogeneity. Control function approach

Dependent variable: Log Yield

First Stage Residuals 0.012∗∗

(0.006)

Observations 51,055
R2 0.180
Adjusted R2 0.178
Residual Std. Error 1.302 (df = 50895)

Note: Other covariates omitted. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at village level

B.4 Non-linearity and interactions

As a robustness check, we fit a spline for the log-linear estimation in different combination of years, and

Figure 18 shows how the results hold. There is no capping out effect as in the figure in the paper, because

the households in high-intensity areas (100+ worm eggs/person) that drive that effect are either trimmed

or not surveyed in the above year combinations. We also fit a spline using all years (2003-2017) and the

results stay consistent, although likely plagued with a variety of issues, since there are effectively only two

data points per village in time. The lower left panel of Fig.18 shows the good residuals fit for the log-

linear estimation of Figure 2 in the paper. There is a small positive effect of schistosomiasis on agricultural

yield for low levels of intensity, with the significantly negative marginal effect beginning at an infection

intensity of 30 eggs/person. This small positive marginal effect for low intensity stems from the interaction

between schistosomiasis and malaria: given that malaria is only available as a prevalence measure, we fit a

multidimensional spline for the interaction between malaria and schistosomiasis prevalence. The relationship

is highly nonlinear, as displayed in the right hand panel of Figure 18: high prevalence levels for both diseases

correlate with low crop yields, but low to intermediate levels of schistosomiasis mitigate the negative effects

of high malaria prevalence. The immunological mechanisms behind this phenomenon have been discussed

by Hartgers and Yazdanbakhsh (2006) and Degarege et al. (2016), who present evidence on how low- to

mid-intensity schistosomiasis can protect from acute malaria infections.

B.5 Other determinants of agriculture in the instrumented linear regressions

Table 9 reports the rest of the coefficients for the linear estimations. For clarity we only report the ones

significant at standard levels of confidence: because of the nature of the data, constant at a village level,

and the procedure being 2SLS, errors are cluster-bootstrapped at a village level, and therefore increase

largely estimation errors and many controls result statistically insignificant. All continuous covariates are in

logs. Signs are usually as expected, with an interesting negative quadratic relationship between plot surface

and yield, suggesting decreasing returns to scale in plot size. Figure 19 shows nonlinear estimates of the

correlation of schistosomiasis and the size of the cultivated plot. The negative quadratic relationship between

yield and plot size remains established, and it seems that middle-sized plots are the ones that generate the

higher yield.
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61



Table 9: Other determinants of agricultural yield

Dependent variable: log yield

Log surface 0.466∗∗∗
(0.054)

Log surface2 −0.140∗∗∗
(0.025)

Presence of hired labor 0.106∗∗∗
(0.033)

Total livestock used in agriculture 0.057∗∗∗
(0.022)

Female livestock used for breeding −0.051∗∗
(0.024)

Cows 0.029∗
(0.015)

Sales of cows −0.049∗
(0.026)

Npk (kg) 0.020∗∗
(0.008)

Urea (kg) 0.028∗∗∗
(0.009)

Solid pesticides (g) 0.027∗
(0.014)

Herbicides (g) 0.015∗
(0.008)

Plot near houses 0.604∗∗
(0.283)

Plot near bushes 0.577∗∗
(0.283)

Plot near encampment 0.587∗∗
(0.287)

Plot on flatland 0.185∗∗∗
(0.040)

Plot farmed with half-moon technique −0.665∗∗∗
(0.203)

Dead/live hedges 0.169∗∗
(0.080)

Maximum level of education in household: Non-alphabetized −0.123∗∗
(0.057)

Maximum level of education in household: Alphabetized −0.057∗
(0.034)

Maximum level of education in household: Primary −0.162∗∗
(0.073)

Loss due to flooding −0.982∗∗∗
(0.122)

Loss due to fire −0.549∗∗∗
(0.117)

Loss due to drought −0.680∗∗∗
(0.044)

Loss after harvesting −0.987∗∗∗
(0.156)

Mean temperature −0.04∗
(2.597)

Temperature in dry season 0.03∗∗
(1.586)

Precipitation in dry season 0.721∗∗∗
(0.227)

Max dry spell −0.307∗∗∗
(0.113)

Mean of land surface temperature (day) −0.02∗∗
(1.088)

Mean of land surface temperature (night) 0.022∗∗∗
(0.915)

Enhanced Vegetation Index (level) 4.8∗∗
(2.014)

Note: Time+hh+crop fe. Cluster-bootstrapped (village) ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C Schistosomiasis and poverty: subsistence farming and crop choices

We investigate whether schistosomiasis affects households differently based on whether they cultivate cash

crops (cotton) or food crops (all the rest, mostly of subsistence). The question is of substantial policy

relevance: if schistosomiasis exerts a lower burden for cash crops, then policies aimed at poverty reduction

and diversification of the agricultural sector will carry along a beneficial effect on the reduction of the

economic impact of schistosomiasis. We first note that plots that cultivate cash crops are substantially

larger than the rest: Figure 20 shows the density of the log surface of plots used for cotton and the overall

surface density, and shows how plots that cultivate cotton as a cash crop are substantially larger than the

others. Larger farms in Burkina Faso involve richer households, especially when agriculture is not anymore

of the subsistence variety. Cotton, furthermore, is drought-resistant and mostly rainfall-fed, therefore less in

need of plots being around large water reservoirs or networks. We expect the effect to be reduced for these

crops: we also expect the productivity shock to be less harmful for farms and households where constraints

are less binding and agricultural yield is not as directly crucial for survival. The upper panel of Figure 21

estimate the main plot-level model with the same techniques as the main estimation. Errors are cluster-

boostrapped. Instrumentation of the model increases the estimates by a large amount, because subsetting

to cotton crops reduces greatly the variation in reservoir area of the snail hosts, as well as their estimated

density: IV estimates are then large and extremely noisy. In any case, there does not seem to be a significant

adverse effect of schistosomiasis on households farming cotton as cash crop, and the reason is likely to

be twofold. The first reason is in cotton being a drought-resistant crop and thus requiring less irrigation

networks: in the paper we show how this directly reduces the effective burden of the disease. The second

reason lies in the fact that farms and households farming cash crops own substantially larger plots and are

on average much richer; this can have multiple implications, from increased access to clean running water to

better sanitary conditions. As the lower panel of Figure 21 shows, food crops, and particularly smaller plots

mostly dedicated to farming of the subsistence variety, seem to suffer most of the disease burden, and hint

at schistosomiasis being indeed a disease of poverty. Economic development aimed at raising individuals and
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Figure 21: (Upper panel) Schistosomiasis burden for cash crops-only plots: no effect (Lower panel) Burden
for food crops, mostly of subsistence: large effect. In labels: percentage yield loss for villages at the average
schistosomiasis intensity.

households from having to farm for survival to a standard of agriculture with better returns and conditions

will generate both an improvement in living standards and a reduction of the disease burden.

D Schistosomiasis and poverty: burden heterogeneity

We now turn our attention to the heterogeneity of the disease burden for different joint quantiles of plot

surface and plot yield. In the previous section we showed how cotton crops - cash crops - are on average

much larger, and how for these crops the burden of schistosomiasis is small and not statistically significant.

Cash crops are usually farmed by households which do not rely on subsistence agriculture, own larger plots

and are thus on average richer. As stated in the paper, this is a first sign of how schistosomiasis causes

and reinforces poverty, but it might be that smaller, poorer households also use cash crops (particularly

GMO-resistent varieties of cotton) in order to reduce the risk of adverse shocks. This is not a common

occurrence in our dataset, as seen in the histograms of Fig. 12. Table 10 shows the coefficients of the

interaction term of the specifications stated in the main paper, and Table 11 reports the respective p-values.

These coefficients represent the added effect of schistosomiasis for the plots that are at the tail of the joint

surface-weight distribution, for different quantiles. We note that the effect stops being significant around the
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55th percentile. We then focus on households farming only food crops that lie at the very bottom of the joint

distribution between households, grouping total harvest weight and overall plots surface per household and

creating an indicator for the households at the 5th and 10th bottom percentiles. These households exhibit

the lowest overall production and farm smallest plots, and thus belong to a situation of extreme poverty,

especially given the overall state of agriculture in 2009-2011 Burkina Faso. Table 12 shows the coefficients

for the respective quantiles, the diagonal of which is represented in the paper. All estimates are from a

log-linear model where schistosomiasis intensity is instrumented with a control function approach (standard

2SLS yields equivalent results), and errors are cluster-bootstrapped at a village level.

Table 10: Estimates of the interaction term for the poverty quantile and schistosomiasis intensity. Rows:
surface, Columns: yield

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.2 -0.015 -0.013 -0.011 -0.012 -0.013 -0.015 -0.015 -0.015 -0.014 -0.015 -0.014
0.25 -0.015 -0.013 -0.011 -0.012 -0.013 -0.014 -0.014 -0.013 -0.013 -0.013 -0.012
0.3 -0.013 -0.012 -0.011 -0.011 -0.011 -0.012 -0.011 -0.011 -0.010 -0.010 -0.010
0.35 -0.013 -0.012 -0.011 -0.010 -0.011 -0.011 -0.011 -0.010 -0.010 -0.010 -0.009
0.4 -0.012 -0.010 -0.009 -0.009 -0.009 -0.009 -0.009 -0.008 -0.008 -0.008 -0.007
0.45 -0.011 -0.010 -0.009 -0.008 -0.008 -0.009 -0.008 -0.007 -0.007 -0.007 -0.007
0.5 -0.010 -0.009 -0.008 -0.007 -0.007 -0.008 -0.007 -0.007 -0.006 -0.007 -0.006
0.55 -0.009 -0.008 -0.007 -0.006 -0.006 -0.007 -0.006 -0.006 -0.005 -0.006 -0.005
0.6 -0.007 -0.007 -0.005 -0.005 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005
0.65 -0.006 -0.006 -0.004 -0.004 -0.004 -0.005 -0.004 -0.004 -0.004 -0.004 -0.004
0.7 -0.005 -0.004 -0.003 -0.003 -0.003 -0.004 -0.003 -0.003 -0.003 -0.003 -0.003

Table 11: P-values for the interaction term for the poverty quantile and schistosomiasis intensity. Rows:
surface, Columns: yield

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.2 0.012 0.014 0.021 0.011 0.004 0.002 0.002 0.002 0.003 0.001 0.001
0.25 0.008 0.011 0.016 0.009 0.004 0.002 0.003 0.003 0.005 0.002 0.002
0.3 0.011 0.010 0.012 0.013 0.006 0.004 0.005 0.005 0.010 0.005 0.005
0.35 0.010 0.010 0.009 0.012 0.006 0.004 0.005 0.005 0.009 0.005 0.005
0.4 0.019 0.019 0.019 0.018 0.014 0.010 0.014 0.016 0.023 0.017 0.017
0.45 0.025 0.022 0.024 0.024 0.021 0.015 0.019 0.022 0.031 0.023 0.021
0.5 0.028 0.026 0.026 0.025 0.022 0.016 0.021 0.024 0.031 0.025 0.025
0.55 0.045 0.042 0.049 0.047 0.038 0.029 0.036 0.040 0.051 0.042 0.041
0.6 0.081 0.070 0.091 0.080 0.062 0.047 0.059 0.058 0.067 0.061 0.055
0.65 0.119 0.097 0.162 0.138 0.125 0.101 0.132 0.118 0.131 0.107 0.105
0.7 0.174 0.183 0.264 0.236 0.211 0.160 0.185 0.157 0.182 0.148 0.150

Table 12: Coefficients of the interaction term for household at the bottom quantiles of total yield and plot
surface (∗∗∗: significant at 1%.).

lower 5% surface lower 10% surface

lower 5% yield -0.044∗∗∗ -0.039∗∗∗

lower 10% yield -0.049∗∗∗ -0.045∗∗∗

E Schistosomiasis and water resources development

We report here the full set of results for the analysis of schistosomiasis and water resources development.

We focus on Burkina Faso’s four main dams:the Bagré Dam in Boulgou province, which also involves

Zoundwéogo, Kouritenga and Ganzourgou provinces, the Kompienga Dam in Kompienga province, the Ziga

Dam in Oubritenga province and the Léry Dam in Nayala province. First we notice how the distribution of

the schistosomiasis prevalence seems substantially higher in areas near the large dams, as shown in Figure

22. We are interested in whether the presence of a large dam affects the magnitude of the negative impact
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Figure 22: Distribution of schistosomiasis prevalence in areas near a large dam, plotted against the overall
distribution and the distribution of the disease in the rest of the country.

of schistosomiasis on agricultural yields: we therefore augment our initial model with an indicator variable

1dam, representing whether a household is located in a province among those affected by the four large dams

described in the paper, as well as with the interaction between schistosomiasis intensity and the indicator.

The coefficient associated with Ijt × 1dam represents the difference in the effect of schistosomiasis on log

yield attributable to the presence of a dam. This specification allows us to disentangle the direct impact of

dams, which should increase yields, from the deleterious indirect effect that they may produce by facilitating

the diffusion of schistosomiasis. We note that we cannot have household fixed effects, as this estimation

would not allow to estimate the coefficient of the (non-interacted) dam variable, and we rely on region fixed

effects instead. The upper panel of Figure 23 reports the results: irrespective of estimation method, the

interaction term is always statistically significant at conventional levels of confidence, and the presence of a

large dam increases the average loss of agricultural yield due to schistosomiasis by a minimum of 8.2% to a

maximum of 18.7%. The presence of a dam induces spatial effects that do not vanish, contrary to our earlier

results: this is confirmed by how Moran’s I statistic for the village-level model, even after controlling for

region-specific effects, is still significantly positive (0.10, highly significant). Indeed, it is only when a SAR

framework is adopted that the separate effects of intensity and dams are estimated with sufficient precision

to make them statistically significant: the presence of a dam increases yield by 23.8%, and exacerbates the

negative effect of schistosomiasis by 9.9%. Plot level estimation yields mixed results: the interaction term

remains negative and precisely estimated, while the intensity variable becomes statistically indistinguishable

from zero whether one controls for region fixed effects or applies the 2SLS procedure. The upshot is that

our plot-level estimates suggest little effect of schistosomiasis outside of provinces with large dams, though

our SAR results remain our preferred specification from the policy standpoint.

We refine the previous results by accounting for each village’s distance (in km) from the nearest dam

or water reservoir. We start by fitting an adaptive spline to the interaction of each village’s distance from

the dams and schistosomiasis intensity. The full network of dams and reservoirs is illustrated in Panel
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Figure 23: (Upper panel) Differential effect of schistosomiasis on yields caused by the presence of a large
dam. (Middle panels) Estimated joint impact of schistosomiasis intensity and distance from all dams and
water reservoirs. (Lower panel) Joint effect of schistosomiasis and distance from a large dam. All estimates
control for time fixed effects, and plot-level estimates control for crop fixed effects. Errors are clustered at
the regional level for region fixed effects estimates, and at the village level otherwise. 2SLS standard errors
are cluster-bootstrapped.
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(b) of Figure 1 in the paper. Results are displayed in the middle panels of Figure 6: the left-hand panel

shows how the deleterious marginal effect of schistosomiasis intensity on log yield is mitigated as one moves

further away from a dam or a reservoir. The right-hand panel, based on the same estimation procedure,

highlights how areas with high schistosomiasis intensity are concentrated within 20 km of a dam or reservoir.

Households located in these areas suffer from large negative feedback effects between schistosomiasis and

water resources development; to make matters worse, the effect of an increase in distance on the marginal

effect of schistosomiasis intensity is greater for villages which display lower disease intensity. In order to find

out what is the role of large dams in this mechanism, we include the triple interaction Ijt × 1dam × distj ,
as well as all the double interactions, at a village level by both region fixed effects and SAR: the results

are presented in the lower panel of Figure 6 and are very similar. The coefficient of the triple interaction

is positive and significant: it has to be interpreted as the average amount to which the disease burden

decreases as a village near any of the large dams moves one kilometer away from it. This implies an average

reduction of around 1.5% (for SAR estimates) of the schistosomiasis burden on agricultural yield, starting

from the average 18-20% loss suffered by the closest villages: being further away from large dams is therefore

beneficial.

F Proof of the solution of the limiting disease SDE

The coupled SDE driving the disease dynamics is given by

dmt =

(
α(xt)

NBHmt

β +BHmt
− γmt

)
dt+ σmtdWt.

We have shown in the paper that a measurable solution exists for the general case. We can solve explicitly

for a limiting case: because of the assumptions on α(x) we have that when mt is large x→ 0, and α(x)→ α.

Furthermore, when m is large it’s easily seen that the equation reduces to

dmt = (αN − γmt)dt+ σmtdWt.

which implies

dmt −mt(−γdt+ σdWt) = αNdt.

The solution of this limiting SDE is obtained by entirely standard methods. Let us define an Itô process nt

such that

dnt = n1(t, nt)dt+ n2(t, nt)dWt.

and n1, n2 are Lipschitz continuous functions. We would like this process to act as integrating factor for our

SDE, that is

d(mtnt) = nt(αNdt),

implying

d(mtnt) = ntdmt −mtnt(−γdt+ σdWt). (55)

Itô calculus allows us to write
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d(mtnt) = mtdnt + dmtnt + dmtdnt

= mtdnt +mt(n1(t, nt)dt+ n2(t, nt)dWt) + σmtn2(t, nt)dt. (56)

Using (55) we can obtain

−mtnt(−γdt+ σdWt) = mt(n1(t, nt)dt+ n2(t, nt)dWt) + σmtn2(t, nt)dt.

Matching coefficients, we obtain the following relations:

−σmtntdWt = mtn2(t, nt)dWt

γmtntdt = (mtn1(t, nt) + σmtn2(t, nt))dt

The first implies n2 = −σnt, and plugging this in the second yields n1 = nt(γ + σ2).. This means that the

integrating factor solves to

nt = exp

(∫ t

0

(
γ +

1

2
σ2

)
dt−

∫ t

0

σdWt

)
.

when n0 = 1, after applying Itô’s lemma to d lnnt. Let us insert this result back in (56). We can write

d(mtnt) = αNntdt

mt = n−1t

(
m0 + αN

∫ t

0

nsds

)
mt = exp

(
−
∫ t

0

(
γ +

1

2
σ2

)
ds+

∫ t

0

dWs

)
×(

m0 +

∫ t

0

αN exp

(∫ s

0

(
γ +

1

2
σ2

)
dr −

∫ s

0

σdWr

)
ds

)
,

which at the backward limit is (32).
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